Physics of the tau lepton
DOI:
https://doi.org/10.31349/SuplRevMexFis.3.020715Keywords:
Phenomenology of the tau leptonAbstract
Within our present knowledge, the tau is the heaviest lepton and the only one decaying into hadrons, a fact that makes it the source of a very rich phenomenology. It represents the third family of leptons in the Standard Model, a feature that helps its classification but whose real meaning is not asserted yet. The tau lepton provides: i) a clean and unique environment to study both the hadronization of QCD currents, in an energy region populated by resonances, and the phenomenological determination of relevant parameters of the Model; ii) together with the muon, they have a very constrained flavour dynamics (in the absence of neutrino masses) due to an accidental global symmetry of the Standard Model. In consequence, the tau lepton brings an excellent benchmark for the study of QCD at low energies and, at the same time, for the search of new physics.
References
J. F. Donoghue, E. Golowich, and B. R. Holstein, Dynamics of the standard model, (Cambridge University Press, Cambridge, 1992), pp. 1-540, https://doi.org/10.1017/CBO9780511524370.
A. Pich, The Standard Model of Electroweak Interactions in 2010 European School of High Energy Physics, 1 (2012) 1, https://arxiv.org/pdf/1201.0537.
M. D. Schwartz, Quantum Field Theory and the Standard Model, (Cambridge University Press, Cambridge, 2014), pp. 1-850, ISBN: 9781107034730.
S. H. Neddermeyer and C. D. Anderson, Note on the Nature of Cosmic Ray Particles Phys. Rev., 51 (1937) 884, https://doi.org/10.1103/PhysRev.51.884.
Y.-S. Tsai, Decay Correlations of Heavy Leptons in e +e − → l +l − Phys. Rev. D, 4 (1971) 2821, [Erratum: Phys.Rev.D 13 (1976) 771], https://doi.org/10.1103/PhysRevD.4.2821.
M. L. Perl et al., Evidence for Anomalous Lepton Production in e +e − Annihilation Phys. Rev. Lett., 35 (1975) 1489, https://doi.org/10.1103/PhysRevLett.35.1489.
J. Burmester et al., Anomalous Muon Production in e+ e- Annihilation as Evidence for Heavy Leptons Phys. Lett. B, 68 (1977) 297, https://doi.org/10.1016/0370-2693(77)90292-1.
H. Albrecht et al., Determination of the Michel parameter in tau decay Phys. Lett. B, 246 (1990) 278, https://doi.org/10.1016/0370-2693(90)91346-D.
K. Kodama et al., Observation of tau neutrino interactions Phys. Lett. B, 504 (2001) 218, https://doi.org/10.1016S0370-2693(01)00307-0.
D. Boutigny et al., The BABAR physics book: Physics at an asymmetric B factory. 10 (1998), https://doi.org/10. 2172/979931.
A. Abashian et al., The Belle Detector Nucl. Instrum. Meth. A, 479 (2002) 117, https://doi.org/10.1016/ S0168-9002(01)02013-7.
K. Miyabayashi, B physics at BELLE Acta Phys. Polon. B, 32 (2001) 1663.
W. Altmannshofer et al., The Belle II Physics Book PTEP, 2019 (2019) 123C01, https://doi.org/10.1093/ptep/ptz106 [Erratum: PTEP 2020, 029201 (2020)].
D. London and J. Mat´ıas, B Flavour Anomalies: 2021 Theoretical Status Report 10 (2021), https://arxiv.org/ abs/2110.13270.
P. A. Zyla et al., Review of Particle Physics PTEP, 2020 (2020) 083C01, https://doi.org/10.1093/ptep/ptaa104.
R. S. Chivukula and H. Georgi, Composite Technicolor Standard Model Phys. Lett. B, 188 (1987) 99, https://doi.org/10.1016/0370-2693(87)90713-1.
W. J. Marciano and A. Sirlin, Electroweak Radiative Corrections to tau Decay Phys. Rev. Lett., 61 (1988) 1815, https://doi.org/10.1103/PhysRevLett.61.1815.
Z. Han, Electroweak constraints on effective theories with U(2) x (1) flavor symmetry Phys. Rev. D, 73 (2006) 015005, https://doi.org/10.1103/PhysRevD.73.015005.
A. Filipuzzi, J. Portolés, and M. González-Alonso, U(2) 5 flavor symmetry and lepton universality violation in W → τ ντ Phys. Rev. D, 85 (2012) 116010, https://doi.org/10.1103/PhysRevD.85.116010.
G. Aad et al., Test of the universality of τ and µ lepton couplings in W-boson decays with the ATLAS detector Nature Phys., 17 (2021) 813, https://doi.org/10.1038/s41567-021-01236-w.
L. Michel, Interaction between four half spin particles and the decay of the µ meson Proc. Phys. Soc. A, 63 (1950) 514, https://doi.org/10.1088/0370-1298/63/5/311.
A. Rouge, Tau lepton Michel parameters and new physics Eur. Phys. J. C, 18 (2001) 491, https://doi.org/10.1007/s100520000559.
E. Braaten, S. Narison, and A. Pich, QCD analysis of the tau hadronic width Nucl. Phys. B, 373 (1992) 581, https://doi.org/10.1016/0550-3213(92)90267-F.
A. Pich and J. Prades, Strange quark mass determination from Cabibbo suppressed tau decays JHEP, 10 (1999) 004, https://doi.org/10.1088/1126-6708/1999/10/004.
E. Gamiz, M. Jamin, A. Pich, J. Prades, and F. Schwab, ´ Determination of ms and |Vus| from hadronic tau decays JHEP, 01 (2003) 060, https://doi.org/10.1088/1126-6708/2003/01/060.
A. Pich, Precision Tau Physics Prog. Part. Nucl. Phys., 75 (2014) 41, https://doi.org/10.1016/j.ppnp.2013.11.002.
Y. S. Amhis et al., Averages of b-hadron, c-hadron, and τ -lepton properties as of 2018 Eur. Phys. J. C, 81 (2021) 226, https://doi.org/10.1140/epjc/s10052-020-8156-7.
Davier, Michel and Hocker, Andreas and Zhang, Zhiqing, The ¨ Physics of Hadronic Tau Decays Rev. Mod. Phys., 78 (2006) 1043, https://doi.org/10.1103/RevModPhys.78.1043.
Davier, M. and Descotes-Genon, S. and Hocker, Andreas and ¨ Malaescu, B. and Zhang, Z., The Determination of αS from τ Decays Revisited Eur. Phys. J. C, 56 (2008) 305, https://doi.org/10.1140/epjc/s10052-008-0666-7.
J. Erler, Electroweak radiative corrections to semileptonic tau decays Rev. Mex. Fis., 50 (2004) 200.
F. Le Diberder and A. Pich, The perturbative QCD prediction to R(tau) revisited Phys. Lett. B, 286 (1992) 147, https://doi.org/10.1016/0370-2693(92)90172-Z.
F. Le Diberder and A. Pich, Testing QCD with tau decays Phys. Lett. B, 289 (1992) 165, https://doi.org/10.1016/0370-2693(92)91380-R.
Baikov, P. A. and Chetyrkin, K. G. and Kuhn, Johann H.,¨“Order alpha**4(s) QCD Corrections to Z and tau Decays Phys. Rev. Lett., 101 (2008) 012002, https://doi.org/10.1103/PhysRevLett.101.012002.
A. Pich and A. Rodr´ıguez-Sánchez, Updated determination of αs(m2 τ ) from tau decays Mod. Phys. Lett. A, 31 (2016) 1630032, https://doi.org/10.1142/S0217732316300329.
A. Pich and A. Rodr´ıguez-Sánchez, Determination of the QCD coupling from ALEPH τ decay data Phys. Rev. D, 94 (2016) 034027, https://doi.org/10.1103/PhysRevD.94.034027.
D. Boito, M. Golterman, K. Maltman, and S. Peris, Strong coupling from hadronic τ decays: A critical appraisal Phys. Rev. D, 95 (2017) 034024, https://doi.org/10.1103/PhysRevD.95.034024.
C. McNeile, A. Bazavov, C. T. H. Davies, R. J. Dowdall, K. Hornbostel, G. P. Lepage, and H. D. Trottier, Direct determination of the strange and light quark condensates from full lattice QCD Phys. Rev. D, 87 (2013) 034503, https://doi.org/10.1103/PhysRevD.87.034503.
M. Jamin, Flavor symmetry breaking of the quark condensate and chiral corrections to the Gell-Mann-Oakes-Renner relation” Phys. Lett. B, 538 (2002) 71, https://doi.org/10.1016/S0370-2693(02)01951-2.
M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, QCD and Resonance Physics. Theoretical Foundations” Nucl. Phys. B, 147 (1979) 385, https://doi.org/10.1016/0550-3213(79)90022-1.
M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, QCD and Resonance Physics: Applications Nucl. Phys. B, 147 (1979) 448, https://doi.org/10.1016/0550-3213(79)90023-3.
M. Davier, A. Hocker, B. Malaescu, C.-Z. Yuan, and Z. Zhang, ¨ Update of the ALEPH non-strange spectral functions from hadronic τ decays Eur. Phys. J. C, 74 (2014) 2803, https://doi.org/10.1140/epjc/s10052-014-2803-9.
D. Boito, M. Golterman, K. Maltman, S. Peris, M. V. Rodrigues, and W. Schaaf, Strong coupling from an improved τ vector isovector spectral function Phys. Rev. D, 103 (2021) 034028, https://doi.org/10.1103/PhysRevD.103.034028.
Ayala, Cesar and Cvetic, Gorazd and Teca, Diego, Determination of perturbative QCD coupling from ALEPH τ decay data using pinched Borel–Laplace and Finite Energy Sum Rules Eur. Phys. J. C, 81 (2021) 930, https://doi.org/10.1140/epjc/s10052-021-09664-x.
Portolés, J., Hadronic decays of the tau lepton: Theoretical outlook Nucl. Phys. B Proc. Suppl., 169 (2007) 3, https://doi.org/10.1016/j.nuclphysbps.2007.02.098.
Kuhn, Johann H. and Santamaria, A., Tau decays to pions ¨ Z. Phys. C, 48 (1990) 445, https://doi.org/10.1007/ BF01572024.
M. Finkemeier and E. Mirkes, Tau decays into kaons Z. Phys. C, 69 (1996) 243, https://doi.org/10.1007/s002880050024.
F. Guerrero and A. Pich, Effective field theory description of the pion form-factor Phys. Lett. B, 412 (1997) 382, https://doi.org/10.1016/S0370-2693(97)01070-8.
Gomez Dumm, D. and Pich, A. and Portolés, J., τ → πππντ decays in the resonance effective theory Phys. Rev. D, 69 (2004) 073002, https://doi.org/10.1103/PhysRevD.69.073002.
Gomez Dumm, D. and Roig, P. and Pich, A. and Portolés, J., ´“τ → πππντ decays and the a1(1260) off-shell width revisited Phys. Lett. B, 685 (2010) 158, https://doi.org/10.1016/j.physletb.2010.01.059.
Gomez Dumm, D. and Roig, P. and Pich, A. and Portolés, J., Hadron structure in τ → KKπντ decays Phys. Rev. D, 81 (2010) 034031, https://doi.org/10.1103/PhysRevD.81.034031.
E. A. Garces, M. Hernández Villanueva, G. López Castro, and P. Roig, Effective-field theory analysis of the τ − → η (0)π −ντ decays JHEP, 12 (2017) 027, https://doi.org/10.1007/JHEP12(2017)027.
Pich, A. and Portolés, J., The Vector form-factor of the pion from unitarity and analyticity: A Model independent approach Phys. Rev. D, 63 (2001) 093005, https://doi.org/10.1103/PhysRevD.63.093005.
D. Gomez Dumm and P. Roig, Dispersive representation of ´ the pion vector form factor in τ → ππντ decays Eur. Phys. J. C, 73 (2013) 528, https://doi.org/10.1140/epjc/s10052-013-2528-1.
S. J. Brodsky and G. R. Farrar, Scaling Laws at Large Transverse Momentum Phys. Rev. Lett., 31 (1973) 1153, https://doi.org/10.1103/PhysRevLett.31.1153.
G. P. Lepage and S. J. Brodsky, Exclusive Processes in Perturbative Quantum Chromodynamics Phys. Rev. D, 22 (1980) 2157, https://doi.org/10.1103/PhysRevD. 22.2157.
E. G. Floratos, S. Narison, and E. de Rafael, Spectral Function Sum Rules in Quantum Chromodynamics. 1. Charged Currents Sector Nucl. Phys. B, 155 (1979) 115, https://doi.org/10.1016/0550-3213(79)90359-6.
Kühn, Johann H. and Mirkes, E., Structure functions in tau decays Z. Phys. C, 56 (1992) 661, https://doi.org/10.1007/BF01474741 [Erratum: Z.Phys.C 67 (1995) 364].
G. Ecker, J. Gasser, A. Pich, and E. de Rafael, The Role of Resonances in Chiral Perturbation Theory Nucl. Phys. B, 321 (1989) 311, https://doi.org/10.1016/0550-3213(89)90346-5.
G. Ecker, J. Gasser, H. Leutwyler, A. Pich, and E. de Rafael, Chiral Lagrangians for Massive Spin 1 Fields Phys. Lett. B, 223 (1989) 425, https://doi.org/10.1016/0370-2693(89)91627-4.
M. Jamin, A. Pich, and J. Portolés, Spectral distribution for the decay τ → ντKπ Phys. Lett. B, 640 (2006) 176, https://doi.org/10.1016/j.physletb.2006.06.058.
A. M. Baldini et al., Search for the lepton flavour violating decay µ + → e +γ with the full dataset of the MEG experiment Eur. Phys. J. C, 76 (2016) 434, https://doi.org/10.1140/epjc/s10052-016-4271-x.
A. Brignole and A. Rossi, Anatomy and phenomenology of mu-tau lepton flavor violation in the MSSM Nucl. Phys. B, 701 (2004) 3, https://doi.org/10.1016/j.nuclphysb.2004.08.037.
T. Fukuyama, A. Ilakovac, and T. Kikuchi, Lepton flavor violating leptonic/semileptonic decays of charged leptons in the minimal supersymmetric standard model Eur. Phys. J. C, 56 (2008) 125, https://doi.org/10.1140/epjc/s10052-008-0625-3.
C.-x. Yue, Y.-m. Zhang, and L.-j. Liu, Nonuniversal gauge bosons Z-prime and lepton flavor violation tau decays Phys. Lett. B, 547 (2002) 252, https://doi.org/10.1016/S0370-2693(02)02781-8.
del Aguila, Francisco and Illana, José I. and Jenkins, Mark D., Lepton flavor violation in the Simplest Little Higgs model JHEP, 03 (2011) 080, https://doi.org/10.1007/JHEP03(2011)080.
Lami, A. and Portolés, J. and Roig, P., Lepton flavor violation in hadronic decays of the tau lepton in the simplest little Higgs model Phys. Rev. D, 93 (2016) 076008, https://doi.org/10.1103/PhysRevD.93.076008.
A. G. Akeroyd, M. Aoki, and Y. Okada, Lepton Flavour Violating tau Decays in the Left-Right Symmetric Model Phys. Rev. D, 76 (2007) 013004, https://doi.org/10.1103/PhysRevD.76.013004.
Buchmuller, W. and Wyler, D., Effective Lagrangian Analysis of New Interactions and Flavor Conservation Nucl. Phys. B, 268 (1985) 621, https://doi.org/10.1016/0550-3213(86)90262-2.
B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian JHEP, 10 (2010) 085, https://doi.org/10.1007/JHEP10(2010)085.
A. Celis, V. Cirigliano, and E. Passemar, Modeldiscriminating power of lepton flavor violating τ decays Phys. Rev. D, 89 (2014) 095014, https: //doi.org/10.1103/PhysRevD.89.095014.
T. Husek, K. Monsalvez-Pozo, and J. Portolés, Lepton-flavour ´ violation in hadronic tau decays and µ − τ conversion in nuclei JHEP, 01 (2021) 059, https://doi.org/10. 1007/JHEP01(2021)059.
S. Gninenko, S. Kovalenko, S. Kuleshov, V. E. Lyubovitskij, and A. S. Zhevlakov, Deep inelastic e − τ and µ − τ conversion in the NA64 experiment at the CERN SPS Phys. Rev. D, 98 (2010) 015007, https://doi.org/10.1103/PhysRevD.98.015007.
D. Sahoo et al., Search for lepton-number- and baryonnumber-violating tau decays at Belle Phys. Rev. D, 102 (2020) 111101, https://doi.org/10.103/ PhysRevD.102111101.
J. Fuentes-Mart´ın, J. Portolés, and P. Ruiz-Femenenia Instanton mediated baryon number violation in non-universal gauge extended models JHEP, 01, (2015) 134, https://doi.org/10.1007/JHEP01(2015)134.
A. Kobach, Baryon Number, Lepton Number, and Operator Dimension in the Standard Model Phys. Lett. B, 758 (2016) 455, https://doi.org/10.1016/j. physletb.2016.05.050.
Y. Liao, X.-D. Ma, and H.-L. Wang, Effective field theory approach to lepton number violating τ decays Chin. Phys. C, 45 (2021) 073102, https://doi.org/10.1088/1674-1137/abf72e.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Jorge Portoles (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Suplemento de la Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.