Dark matter and neutrinos in Left-Right Mirror Model with Z2 symmetry
DOI:
https://doi.org/10.31349/SuplRevMexFis.3.020725Keywords:
Dark matter, models beyond the standard model, neutrino mass and mixing, non-standard neutrinosAbstract
We discussed the feasibility of including dark matter in the Left-Right Mirror Model with an additional discrete Z2 symmetry. The Z2 symmetry helps to prevent any decay of the possible dark matter candidate, that is, guarantees the stability of the dark matter. The dark matter candidate is proposed as the lightest mirror neutrino. This Z2 discrete symmetry not only guarantees the stability of the dark matter but also controls the free parameters of the model such that they are significantly reduced. Then, mass spectrum of neutrinos is also discussed in two possible scenarios obtained by assigning charge under Z2 symmetry. For one of the scenarios we obtain the relic density for the dark matter candidate and the spin independent scattering cross section between dark matter and proton (neutron).
References
V. E. Ceron, U. Cotti, J. L. Diaz-Cruz and M. Maya, Phys. Rev. D 57 (1998) 1934-1939. https://doi.org/10.1103/PhysRevD.57.1934. [arXiv:hep-ph/9705478 [hep-ph]].
U. Cotti, J. L. Diaz-Cruz, R. Gaitan, H. Gonzales and A. Hernandez-Galeana, Phys. Rev. D 66 (2002) 015004, https://doi.org/10.1103/PhysRevD.66.015004. [arXiv:hep-ph/0205170 [hep-ph]].
R. Gaitan, A. Hernandez-Galeana, J. M. Rivera-Rebolledo and P. Fernandez de Cordoba, Eur. Phys. J. C 72 (2012) 1859. https://doi.org/10.1140/epjc/s10052-012-1859-7. [arXiv:1201.3155 [hep-ph]].
R. Gaitan, A. Hernandez-Galeana, J. H. Montes de Oca, J. M. Rivera-Rebolledo and H. Gonzalez, Nucl. Part. Phys. Proc. 267-269, (2015) 101-107. https://doi.org/10.1016/j.nuclphysbps.2015.10.089.
R. Gaitan, S. Rodriguez-Romo, A. Hernandez-Galeana, J. M. Rivera-Rebolledo and P. Fernandez de Cordoba, Int. J. Mod. Phys. A 22 (2007) 2935. https://doi.org/10.1142/S0217751X07036531. [arXiv:hep-ph/0605249 [hep-ph]].
P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020 (2020) 083C01.
G. Belanger, A. Mjallal and A. Pukhov, Eur. Phys. J. C 81 (2021) 239 https://doi.org/10.1140/epjc/s10052-021-09012-z. [arXiv:2003.08621 [hep-ph]].
A. Semenov, Comput. Phys. Commun. 201 (2016) 167- 170, https://doi.org/10.1016/j.cpc.2016.01.003. [arXiv:1412.5016 [physics.comp-ph]].
N. Aghanim et al. [Planck], Astron. Astrophys. 641 (2020) A6, [erratum: Astron. Astrophys. 652 (2021) C4] https://doi.org/10.1051/0004-6361/201833910. [arXiv:1807.06209 [astro-ph.CO]].
E. Aprile et al. [XENON], Phys. Rev. Lett. 121 (2018) 111302, https://doi.org/10.1103/PhysRevLett.121.111302. [arXiv:1805.12562 [astro-ph.CO]].
M. A. Arroyo-Ureña, J. L. Dıaz-Cruz, R. Gaitan, J. H. M. de Oca and T. A. Valencia-Perez, Eur. Phys. J. Plus 137 (2022) 276, https://doi.org/10.1140/epjp/s13360-022-02452-w. [arXiv:2202.04572 [hep-ph]].
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 M. A. Arroyo-Ureña, R. Gaitan, J. Lamprea, Jose Halim Montes de Oca Yemha, T. A. Valencia-Pérez (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Suplemento de la Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.