Global analysis of NSI in exclusive semileptonic tau decays

Authors

  • Javier Rendón Cinvestav

DOI:

https://doi.org/10.31349/SuplRevMexFis.3.020718

Keywords:

effective field theories, beyond standard model, tau decays

Abstract

We perform a global analysis of exclusive hadronic tau decays into one and two mesons using the low-energy limit of the Standard Model Effective Field Theory up to dimension six, assuming left-handed neutrinos. A controlled theoretical input on the Standard Model hadronic form factors, based on chiral symmetry, dispersion relations, data and asymptotic QCD properties, has allowed us to set bounds on the New Physics (NP) effective couplings using the present experimental data. Our results highlight the importance of semileptonic τ decays in complementing the traditional low-energy probes, such nuclear β decays or semileptonic pion and kaon decays, and the high-energy measurements at LHC scales. This makes yet another reason for considering hadronic tau decays as golden modes at Belle-II.

References

S. González-Solís, A. Miranda, J. Rendón and P. Roig, Exclusive hadronic tau decays as probes of non-SM interactions, Phys. Lett. B 804 (2020) 135371, https://doi.org/10.1016/j.physletb.2020.135371.

J. Rendón, Exclusive hadronic τ decays as probes of non-SM interactions. Departamento de física del Cinvestav, 2021.

W. Buchmuller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621. https://doi.org/10.1016/ 0550-3213(86)90262-2.

B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 1010 (2010) 085, https://doi.org/10.1007/JHEP10(2010)085.

E. A. Garcés, M. Hernández Villanueva, G. López Castro and P. Roig, Effective-field theory analysis of the τ − → η (0)π −ντ decays, JHEP 1712 (2017) 027, https://doi.org/10.1007/JHEP12(2017)027.

J. A. Miranda and P. Roig, Effective-field theory analysis of the τ − → π −π 0 ντ decays, JHEP 1811 (2018) 038, https://doi.org/10.1007/JHEP11(2018)038.

V. Cirigliano, A. Falkowski, M. González-Alonso and A. Rodríguez-Sánchez, Hadronic ? Decays as New Physics Probes in the LHC Era, Phys. Rev. Lett. 122 (2019) 221801, https://doi.org/10.1103/PhysRevLett. 122.221801.

J. Rendón, P. Roig and G. Toledo Sánchez, Effective-field theory analysis of the τ − → (Kπ) −ντ decays, Phys. Rev. D 99 (2019) 093005, https://doi.org/10.1103/PhysRevD.99.093005.

S. González-Solís, A. Miranda, J. Rendón and P. Roig, Effective-field theory analysis of the τ − → K−(η (0) , K0 )ντ decays, Phys. Rev. D 101 (2020) 034010, https://doi.org/10.1103/PhysRevD.101.034010.

V. Cirigliano, J. Jenkins and M. González-Alonso, Semileptonic decays of light quarks beyond the Standard Model, Nucl. Phys. B 830 (2010) 95, https://doi.org/10.1016/j.nuclphysb.2009.12.020.

T. Bhattacharya et al., Probing Novel Scalar and Tensor Interactions from (Ultra)Cold Neutrons to the LHC, Phys. Rev. D 85 (2012) 054512, https://doi.org/10.1103/PhysRevD.85.054512.

V. Cirigliano, M. González-Alonso and M. L. Graesser, Nonstandard Charged Current Interactions: beta decays versus the LHC, JHEP 1302 (2013) 046, https://doi.org/10.1007/JHEP02(2013)046.

V. Cirigliano, S. Gardner and B. Holstein, Beta Decays and Non-Standard Interactions in the LHC Era, Prog. Part. Nucl. Phys. 71 (2013) 93. https://doi.org/10.1016/j. ppnp.2013.03.005.

H. M. Chang, M. González-Alonso and J. Martin Camalich, Nonstandard Semileptonic Hyperon Decays, Phys. Rev. Lett. 114 (2015) 161802, https://doi.org/10.1103/PhysRevLett.114.161802.

A. Courtoy, S. Baeßler, M. González-Alonso and S. Liuti, Beyond-Standard-Model Tensor Interaction and Hadron Phenomenology, Phys. Rev. Lett. 115 (2015) 162001, https://doi.org/10.1103/PhysRevLett.115.162001.

M. González-Alonso and J. Martin Camalich, Global Effective-Field-Theory analysis of New-Physics effects in (semi)leptonic kaon decays, JHEP 1612 (2016) 052 https://doi.org/10.1007/JHEP12(2016)052.

M. González-Alonso and J. Martin Camalich, New Physics in s → ul−ν¯: Interplay between semileptonic kaon and hyperon decays, arXiv:1606.06037 [hep-ph].

S. Alioli, V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Right-handed charged currents in the era of the Large Hadron Collider, JHEP 1705 (2017) 086, https://doi.org/10.1007/JHEP05(2017)086.

M. González-Alonso, J. Martin Camalich and K. Mimouni, Renormalization-group evolution of new physics contributions to (semi)leptonic meson decays, Phys. Lett. B 772 (2017) 777, https://doi.org/10.1016/j. physletb.2017.07.003.

M. González-Alonso, O. Naviliat-Cuncic and N. Severijns, New physics searches in nuclear and neutron β decay, Prog. Part. Nucl. Phys. 104 (2019) 165. https://doi.org/10.1016/j.ppnp.2018.08.002.

A. Sirlin, Radiative corrections to g(v)/g(mu) in simple extensions of the su(2) x u(1) gauge model, Nucl. Phys. B 71 (1974) 29. https://doi.org/10.1016/0550-3213(74)90254-5.

A. Sirlin, Current Algebra Formulation of Radiative Corrections in Gauge Theories and the Universality of the Weak Interactions, Rev. Mod. Phys. 50 (1978) 573, Erratum: [Rev. Mod. Phys. 50 (1978) 905]. https://doi.org/10.1103/RevModPhys.50.573.

A. Sirlin, Large m(W), m(Z) Behavior of the O(alpha) Corrections to Semileptonic Processes Mediated by W, Nucl. Phys. B 196 (1982) 83. https://doi.org/10.1016/0550-3213(82)90303-0.

W. J. Marciano and A. Sirlin, Radiative Corrections to beta Decay and the Possibility of a Fourth Generation, Phys. Rev. Lett. 56 (1986) 22. https://doi.org/10.1103/PhysRevLett.56.22.

W. J. Marciano and A. Sirlin, Electroweak Radiative Corrections to tau Decay, Phys. Rev. Lett. 61 (1988) 1815. https://doi.org/10.1103/PhysRevLett.61.1815.

W. J. Marciano and A. Sirlin, Radiative corrections to pi(lepton 2) decays, Phys. Rev. Lett. 71 (1993) 3629. https://doi.org/10.1103/PhysRevLett.71.3629.

E. Braaten and C. S. Li, Electroweak radiative corrections to the semihadronic decay rate of the tau lepton, Phys. Rev. D 42 (1990) 3888. https://doi.org/10.1103/PhysRevD.42.3888.

J. Erler, Rev. Mex. Fis. 50 (2004) 200.

S. González-Solís and P. Roig, A dispersive analysis of the pion vector form factor and τ − → K−KSντ decay, Eur. Phys. J. C 79 (2019) 436 https://doi.org/10.1140/epjc/s10052-019-6943-9.

A. Pich and J. Portoles, The Vector form-factor of the pion from unitarity and analyticity: A Model independent approach, Phys. Rev. D 63 (2001) 093005, https://doi.org/10.1103/PhysRevD.63.093005.

D. Gómez Dumm and P. Roig, Dispersive representation of the pion vector form factor in τ → ππντ decays, Eur. Phys. J. C 73 (2013) 2528, https://doi.org/10.1140/epjc/s10052-013-2528-1.

D. R. Boito, R. Escribano and M. Jamin, K pi vector formfactor, dispersive constraints and tau —> nu(tau) K pi decays, Eur. Phys. J. C 59, 821-829 (2009) https://doi.org/10.1140/epjc/s10052-008-0834-9.

D. R. Boito, R. Escribano and M. Jamin, K π vector form factor constrained by τ− > K piντ and Kl3 decays, JHEP 09 (2010) 031 https://doi.org/10.1007/JHEP09(2010)031.

R. Escribano, S. González-Solís, M. Jamin and P. Roig, Combined analysis of the decays τ − → KSπ −ντ and τ − → K−ηντ , JHEP 09 (2014) 042, https://doi.org/10.1007/JHEP09(2014)042.

R. Escribano, S. González-Solís and P. Roig, τ − → K−η (0) ντ decays in Chiral Perturbation Theory with Resonances, JHEP 10 (2013) 039, https://doi.org/10.1007/JHEP10(2013)039.

S. Descotes-Genon and B. Moussallam, Analyticity of ηπ isospin-violating form factors and the τ → ηπν second-class decay, Eur. Phys. J. C 74 (2014) 2946, https://doi.org/10.1140/epjc/s10052-014-2946-8.

Z. H. Guo and J. A. Oller, Resonances from meson-meson scattering in U(3) CHPT, Phys. Rev. D 84 (2011) 034005, https://doi.org/10.1103/PhysRevD.84.034005.

Z. H. Guo, J. A. Oller and J. Ruiz de Elvira, Chiral dynamics in form factors, spectral-function sum rules, mesonmeson scattering and semi-local duality, Phys. Rev. D 86 (2012) 054006, https://doi.org/10.1103/PhysRevD.86.054006.

Z. H. Guo, L. Liu, U. G. Meißner, J. A. Oller and A. Rusetsky, Chiral study of the a0(980) resonance and πη scattering phase shifts in light of a recent lattice simulation, Phys. Rev. D 95 (2017) 054004, https://doi.org/10.1103/PhysRevD.95.054004.

M. Jamin, J. A. Oller and A. Pich, Strangeness changing scalar form-factors, Nucl. Phys. B 622 (2002) 279, https://doi.org/10.1016/S0550-3213(01)00605-8.

V. Cirigliano, A. Crivellin and M. Hoferichter, Nogo theorem for nonstandard explanations of the τ → KSπντ CP asymmetry, Phys. Rev. Lett. 120 (2018) 141803, https://doi.org/10.1103/PhysRevLett.120.141803. [arXiv:1712.06595 [hep-ph]].

M. Hoferichter, B. Kubis, J. Ruiz de Elvira and P. Stoffer, Nucleon Matrix Elements of the Antisymmetric Quark Tensor, Phys. Rev. Lett. 122 (2019) 122001, https://doi.org/10.1103/PhysRevLett.122.122001.

O. Cata and V. Mateu, “Chiral perturbation theory with tensor sources, JHEP 09 (2007) 078. https://doi.org/10.1088/1126-6708/2007/09/078. [arXiv:0705.2948 [hep-ph]].

I. Baum, V. Lubicz, G. Martinelli, L. Orifici and S. Simula, Matrix elements of the electromagnetic operator between kaon and pion states, Phys. Rev. D 84 (2011) 074503, https://doi.org/10.1103/PhysRevD.84.074503.

S. Aoki et al. [Flavour Lattice Averaging Group], FLAG Review 2019, arXiv:1902.08191 [hep-lat].

R. Decker and M. Finkemeier, Short and long distance effects in the decay τ → π tau-neutrino (gamma), Nucl. Phys. B 438 (1995) 17, https://doi.org/10.1016/0550-3213(95)00597-L.

V. Cirigliano and I. Rosell, π/Ke anti-nu(e) branching ratios to O(e**2 p**4) in Chiral Perturbation Theory, JHEP 0710 (2007) 005, https://doi.org/10.1088/1126-6708/2007/10/005.

J. L. Rosner, S. Stone and R. S. Van de Water, Leptonic Decays of Charged Pseudoscalar Mesons – 2015.

M. Tanabashi et al. [Particle Data Group], Review of Particle Physics, Phys. Rev. D 98 (2018) 030001.

M. A. Arroyo-Ureña, G. Hernández-Tomé, G. López-Castro, P. Roig and I. Rosell, Radiative corrections to τ → π(K)ντ γ: A reliable new physics test, Phys. Rev. D 104 (2021) L091502, https://doi.org/10.1103/PhysRevD.104.L091502.

Z. H. Guo and P. Roig, One meson radiative tau decays, Phys. Rev. D 82 (2010) 113016, https://doi.org/10.1103/PhysRevD.82.113016.

J. C. Hardy and I. S. Towner, Superallowed 0 + → 0 + nuclear β decays: 2020 critical survey, with implications for Vud and CKM unitarity, Phys. Rev. C 102 (2020) 045501, https://doi.org/10.1103/PhysRevC.102.045501.

M. Fujikawa et al. [Belle Collaboration], High-Statistics Study of the tau- pi- pi0 nu(tau) Decay, Phys. Rev. D 78 (2008) 072006, https://doi.org/10.1103/PhysRevD.78.072006.

D. Epifanov et al. [Belle Collaboration], Study of tau- K(S) pinu(tau) decay at Belle, Phys. Lett. B 654 (2007) 65, https://doi.org/10.1016/j.physletb.2007.08.045.

K. Inami et al. [Belle], Precise measurement of hadronic tau-decays with an eta meson, Phys. Lett. B 672 (2009) 209, https://doi.org/10.1016/j.physletb.2009.01.047.

J. P. Lees et al. [BaBar], Study of high-multiplicity 3-prong and 5-prong tau decays at BABAR, Phys. Rev. D 86 (2012) 092010, https://doi.org/10.1103/PhysRevD.86.092010.

G. D’Ambrosio, G. F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys. B 645 (2002) 155, https://doi.org/10.1016/S0550-3213(02)00836-2.

Downloads

Published

2022-05-25

How to Cite

1.
Rendón J. Global analysis of NSI in exclusive semileptonic tau decays. Supl. Rev. Mex. Fis. [Internet]. 2022 May 25 [cited 2022 Dec. 3];3(2):020718 1-7. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6312