Theory and phenomenology of the three-gluon vertex

Authors

  • Joannis Papavassiliou Universidad de Valencia
  • A. C. Aguilar University of Campinas - UNICAMP
  • M. N. Ferreira University of Campinas - UNICAMP

DOI:

https://doi.org/10.31349/SuplRevMexFis.3.0308112

Keywords:

Nonperturbative QCD, Schwinger-Dyson Equations, Lattice QCD, Three-gluon vertex, Infrared Green's functions

Abstract

The three-gluon vertex is a fundamental ingredient of the intricate QCD dynamics, being inextricably connected to key nonperturbative phenomena, such as the emergence of a mass scale in the gauge sector of the theory. In this presentation, we review the main theoretical properties of the three-gluon vertex in the Landau gauge, obtained from the fruitful synergy between functional methods and lattice simulations. We pay particular attention to the manifestation and origin of the infrared suppression of its main form factors and the associated zero crossing. In addition, we discuss certain characteristic phenomenological applications that require this special vertex as input.

 

References

W. J. Marciano and H. Pagels, Phys. Rept. 36 (1978) 137

J. S. Ball and T.-W. Chiu, Phys. Rev. D 22 (1980) 2550 [Erratum: Phys.Rev.D 23 (1981) 3085].

A. I. Davydychev, P. Osland, and O. Tarasov, Phys. Rev. D 54 (1996) 4087, [Erratum: Phys.Rev.D 59 (1999) 109901].

D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343.

H. D. Politzer, Phys. Rev. Lett. 30 (1973) 1346.

R. Alkofer, C. S. Fischer, and F. J. Llanes-Estrada, Phys. Lett. B 611 (2005) 279, [Erratum: Phys.Lett.B 670 (2009) 460].

M. Q. Huber, A. Maas, and L. von Smekal, J. High Energy Phys. 11 (2012) 035.

M. Pelaez, M. Tissier, and N. Wschebor, Phys. Rev. D 88 (2013) 125003.

A. C. Aguilar, D. Binosi, D. Ibañez, and J. Papavassiliou, Phys. Rev. D 89 (2014) 085008.

A. Blum, M. Q. Huber, M. Mitter, and L. von Smekal, Phys. Rev. D 89 (2014) 061703.

G. Eichmann, R. Williams, R. Alkofer, andM. Vujinovic, Phys. Rev. D 89 (2014) 105014.

M. Mitter, J. M. Pawlowski, and N. Strodthoff, Phys. Rev. D 91 (2015) 054035.

R. Williams, C. S. Fischer, and W. Heupel, Phys. Rev. D 93 (2016) 034026.

A. L. Blum, R. Alkofer, M. Q. Huber, and A. Windisch, Acta Phys. Polon. Supp. 8 (2015) 321.

A. K. Cyrol, L. Fister, M. Mitter, J. M. Pawlowski, and N. Strodthoff, Phys. Rev. D 94 (2016) 054005.

L. Corell, A. K. Cyrol, M. Mitter, J. M. Pawlowski, and N. Strodthoff, SciPost Phys. 5 (2018) 066.

P. Boucaud, F. De Soto, J. Rodríguez-Quintero, and S. Zafeiropoulos, Phys. Rev. D 95 (2017) 114503.

M. Q. Huber, Phys. Rept. 879 (2020) 1.

A. C. Aguilar, M. N. Ferreira, C. T. Figueiredo, and J. Papavassiliou, Phys. Rev. D 99 (2019) 094010.

A. C. Aguilar et al., Eur. Phys. J. C 80 (2020) 154.

A. C. Aguilar, M. N. Ferreira, C. T. Figueiredo, and J. Papavassiliou, Phys. Rev. D 100 (2019) 094039.

C. Parrinello, Phys. Rev. D 50 (1994) R4247.

B. Alles, D. Henty, H. Panagopoulos, C. Parrinello, C. Pittori, and D. G. Richards, Nucl. Phys. B 502 (1997) 325.

C. Parrinello, D. Richards, B. Alles, H. Panagopoulos, and C. Pittori (UKQCD), Nucl. Phys. B Proc. Suppl. 63 (1998) 245.

P. Boucaud, J. P. Leroy, J. Micheli, O. Pene, and C. Roiesnel, J. High Energy Phys. 10 (1998) 017.

A. Cucchieri, A. Maas, and T. Mendes, Phys. Rev. D 74 (2006) 014503.

A. Cucchieri, A. Maas, and T. Mendes, Phys. Rev. D 77 (2008) 094510.

A. Athenodorou et al., Phys. Lett. B 761 (2016) 444.

A. G. Duarte, O. Oliveira, and P. J. Silva, Phys. Rev. D 94 (2016) 074502.

M. Vujinovic and T. Mendes, Phys. Rev. D 99 (2019) 034501.

J. M. Cornwall, Phys. Rev. D 26 (1982) 1453.

R. Alkofer, M. Q. Huber, and K. Schwenzer, Eur. Phys. J. C 62 (2009) 761.

R. Alkofer, M. Q. Huber, and K. Schwenzer, Phys. Rev. D 81 (2010) 105010.

A. C. Aguilar, D. Binosi, and J. Papavassiliou, Phys. Rev. D 78 (2008) 025010.

M. Vujinovic, R. Alkofer, G. Eichmann, and R. Williams, Acta Phys. Polon. Supp. 7 (2014) 607.

A. C. Aguilar, M. N. Ferreira, and J. Papavassiliou, [arXiv:2111.09431 [hep-ph]].

G. Eichmann, J. M. Pawlowski, and J. M. Silva, Phys. Rev. D 104 (2021) 114016.

G. Eichmann and J. M. Pawlowski, in [arXiv:2112.08058 [hepph]].

J. Meyers and E. S. Swanson, Phys. Rev. D 87 (2013) 036009.

E. V. Souza et al., Eur. Phys. J. A 56 (2020) 25.

M. Q. Huber, C. S. Fischer, and H. Sanchis-Alepuz, Eur. Phys. J. C. 81 (2021) 1083.

A. C. Aguilar, M. N. Ferreira, C. T. Figueiredo, and J. Papavassiliou, Phys. Rev. D 99 (2019) 034026.

W. Schleifenbaum, A. Maas, J. Wambach, and R. Alkofer, Phys. Rev. D 72 (2005) 014017.

M. Q. Huber and L. von Smekal, J. High Energy Phys. 04 (2013) 149.

A. C. Aguilar, D. Ibañez, and J. Papavassiliou, Phys. Rev. D 87 (2013) 114020.

D. Binosi, L. Chang, J. Papavassiliou, S.-X. Qin, and C. D. Roberts, Phys. Rev. D 95 (2017) 031501.

A. K. Cyrol, M. Mitter, J. M. Pawlowski, and N. Strodthoff, Phys. Rev. D 97 (2018) 054006.

A. C. Aguilar, F. De Soto, M. N. Ferreira, J. Papavassiliou, and J. Rodríguez-Quintero, Phys. Lett. B 818 (2021) 136352.

A. Salam, Phys. Rev. 130 (1963) 1287.

A. Salam and R. Delbourgo, Phys. Rev. 135 (1964) B1398.

R. Delbourgo and P. C.West, J. Phys. A 10 (1977) 1049.

R. Delbourgo and P. C. West, Phys. Lett. B 72 (1977) 96.

D. Binosi and J. Papavassiliou, Phys. Rept. 479 (2009) 1.

C. D. Roberts, Symmetry 12 (2020) 1468.

C. D. Roberts and A. G. Williams, Prog. Part. Nucl. Phys. 33 (1994) 477.

R. Alkofer and L. von Smekal, Phys. Rept. 353 (2001) 281.

C. S. Fischer, J. Phys. G 32 (2006) R253.

I. C. Cloet and C. D. Roberts, Prog. Part. Nucl. Phys. 77 (2014) 1.

A. C. Aguilar, D. Binosi, and J. Papavassiliou, Front. Phys.(Beijing) 11 (2016) 111203.

D. Binosi, L. Chang, J. Papavassiliou, and C. D. Roberts, Phys. Lett. B 742 (2015) 183.

W.-j. Fu, J. M. Pawlowski, and F. Rennecke, Phys. Rev. D 101 (2020) 054032.

A. C. Aguilar et al., Phys. Rev. D 104 (2021) 054028.

A. C. Aguilar, D. Binosi, J. Papavassiliou, and J. RodriguezQuintero, Phys. Rev. D 80 (2009) 085018.

P. Boucaud et al., Phys. Rev. D 79 (2009) 014508.

P. Boucaud, D. Dudal, J. Leroy, O. Pene, and J. RodriguezQuintero, J. High Energy Phys. 12 (2011) 018.

L. von Smekal, K. Maltman, and A. Sternbeck, Phys. Lett. B 681 (2009) 336.

R. Williams, Eur. Phys. J. A 51 (2015) 57.

A. C. Aguilar, M. N. Ferreira, and J. Papavassiliou, Eur. Phys. J. C 80 (2020) 887.

C. J. Morningstar and M. J. Peardon, Phys. Rev. D 60 (1999) 034509.

G. S. Bali et al., (UKQCD), Phys. Lett. B 309 (1993) 378.

C. McNeile, Nucl. Phys. B Proc. Suppl. 186 (2009) 264.

Y. Chen et al., Phys. Rev. D 73 (2006) 014516.

A. Athenodorou and M. Teper, JHEP 11 (2020) 172.

D. Dudal, M. S. Guimaraes, and S. P. Sorella, Phys. Rev. Lett. 106 (2011) 062003.

S.-S. Xu et al., Eur. Phys. J. A 55 (2019) 113.

J. S. Schwinger, Phys. Rev. 125 (1962) 397.

J. S. Schwinger, Phys. Rev. 128 (1962) 2425.

A. C. Aguilar, D. Ibañez, V. Mathieu, and J. Papavassiliou, Phys. Rev. D 85 (2012) 014018.

D. Ibañez and J. Papavassiliou, Phys. Rev. D 87 (2013) 034008.

A. C. Aguilar, D. Binosi, C. T. Figueiredo, and J. Papavassiliou, Eur. Phys. J. C 78 (2018) 181.

D. Binosi and J. Papavassiliou, Phys. Rev. D 97 (2018) 054029.

A. K. Cyrol, J. M. Pawlowski, A. Rothkopf, and N. Wink, SciPost Phys. 5 (2018) 065.

J. Horak, J. M. Pawlowski, and N. Wink, Phys. Rev. D 102 (2020) 125016.

J. Horak, J. Papavassiliou, J. M. Pawlowski, and N. Wink, Phys. Rev. D 104 (2021) 074017. 85. J. Horak et al., arXiv:2107.13464 [hep-ph]].

Downloads

Published

2022-06-17

How to Cite

1.
Papavassiliou J, Aguilar AC, Ferreira MN. Theory and phenomenology of the three-gluon vertex. Supl. Rev. Mex. Fis. [Internet]. 2022 Jun. 17 [cited 2022 Dec. 9];3(3):0308112 1-8. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6314