Phenomenological studies in the 2HDM and SM using Madgraph 5

Authors

  • Sergio Sicairos-Paez
  • Roger Hernández Pinto Universidad Autónoma de Sinaloa

DOI:

https://doi.org/10.31349/SuplRevMexFis.3.020723

Keywords:

Quantum chromodynamics, models beyond the standard model, collider physics

Abstract

The phenomenological analysis of an extension of the Standard Model is analyzed in this manuscript. The Two Higgs Doublet Model is a simple way to incorporate a second extra doublet to the Standard Model to reduce the tension between experimental measurements and theoretical predictions. This model presents a large phenomenological signals which could guide the search for new physics at hadron colliders. In particular, we study the transverse momentum, the rapidity and the angular distributions of the jets in the $pp \to j j h$ channel within the Standard Model and the Two Higgs Doublet Model in the LHC and FCC environment by means of Monte Carlo simulations made in MadGraph 5.

References

S. Chatrchyan et al. [CMS], Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30-61, https://doi.org/10.1016/j.physletb.2012.08.021.

G. Aad et al. [ATLAS], Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1-29, https://doi.org/10.1016/j.physletb.2012.08.020.

B. Abi et al. [Muon g-2], Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801, https://doi.org/10.1103/PhysRevLett.126.141801.

O. Fischer et al. Unveiling Hidden Physics at the LHC, [arXiv:2109.06065 [hep-ph]].

S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327-340 https://doi.org/10.1016/0378-4371(79)90223-1.

D. de Florian and G. F. R. Sborlini, Hadron plus photon production in polarized hadronic collisions at next-to-leading order accuracy, Phys. Rev. D 83 (2011) 074022, https://doi.org/10.1103/PhysRevD.83.074022.

D. F. Rentería-Estrada, R. J. Hernández-Pinto and G. F. R. Sborlini, Analysis of the Internal Structure of Hadrons Using Direct Photon Production, Symmetry 13 (2021) 942, https://doi.org/10.3390/sym13060942.

D. F. Rentería-Estrada, R. J. Hernández-Pinto, G. F. R. Sborlini and P. Zurita, Reconstructing partonic kinematics at colliders with Machine Learning, [arXiv:2112.05043 [hep-ph]].

A. Abada et al. [FCC], FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1, Eur. Phys. J. C 79 (2019) 474, https://doi.org/10.1140/epjc/s10052-019-6904-3.

A. Abada et al. [FCC], FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2, Eur. Phys. J. ST 228 (2019) 261-623, https://doi.org/10.1140/epjst/e2019-900045-4.

A. Abada et al. [FCC], FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3, Eur. Phys. J. ST 228 (2019) 755-1107, https://doi.org/10.1140/epjst/e2019-900087-0.

A. Abada et al. [FCC], HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4, Eur. Phys. J. ST 228 (2019) 1109-1382, https://doi.org/10.1140/epjst/e2019-900088-6.

A. D. Sakharov, Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32-35, https://doi.org/10.1070/PU1991v034n05ABEH002497.

S. Vagnozzi, E. Giusarma, O. Mena, K. Freese, M. Gerbino, S. Ho and M. Lattanzi, Unveiling ν secrets with cosmological data: neutrino masses and mass hierarchy, Phys. Rev. D 96 (2017) 123503, https://doi.org/10.1103/PhysRevD.96.123503.

S. Vagnozzi, S. Dhawan, M. Gerbino, K. Freese, A. Goobar and O. Mena, Constraints on the sum of the neutrino masses in dynamical dark energy models with w(z) ≥ −1 are tighter than those obtained in ΛCDM, Phys. Rev. D 98 (2018) 083501, https://doi.org/10.1103/PhysRevD.98. 083501.

F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln, Helv. Phys. Acta 6 (1933) 110-127, https://doi.org/10.1007/s10714-008-0707-4.

V. C. Rubin and W. K. Ford, Jr., Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions, Astrophys. J. 159 (1970) 379-403, https://doi.org/10.1086/150317.

V. C. Rubin, N. Thonnard and W. K. Ford, Jr., Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/, Astrophys. J. 238 (1980) 471, https://doi.org/10.1086/158003.

E. Corbelli and P. Salucci, The Extended Rotation Curve and the Dark Matter Halo of M33, Mon. Not. Roy. Astron. Soc. 311 (2000) 441-447, https://doi.org/10.1046/j.1365-8711.2000.03075.x.

D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones and D. Zaritsky, A direct empirical proof of the existence of dark matter, Astrophys. J. Lett. 648 (2006) L109-L113, https://doi.org/10.1086/508162.

S. W. Allen, A. E. Evrard and A. B. Mantz, Cosmological Parameters from Observations of Galaxy Clusters, Ann. Rev. Astron. Astrophys. 49 (2011) 409-470, https://doi.org/10.1146/annurev-astro-081710-102514.

P. A. R. Ade et al. [Planck], Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13, https://doi.org/10.1051/0004-6361/201525830.

A. G. Riess et al. [Supernova Search Team], Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009-1038, https://doi.org/10.1086/300499.

S. Perlmutter et al. [Supernova Cosmology Project], Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565, https://doi.org/10.1086/307221.

H. Georgi, A Model of Soft CP Violation, Hadronic J. 1 (1978) 155, HUTP-78/A010.

P.A. Zyla et al. [Particle Data Group], Review of Particle Physics 2020 (2020) 083C01, https://doi.org/10.1093/ptep/ptaa104.

J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli and M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079, https://doi.org/10.1007/JHEP07(2014)079.

R. D. Ball et al. [NNPDF], JHEP 04 (2015) 040, https://doi.org/10.1007/JHEP04(2015)040.

Downloads

Published

2022-06-23

How to Cite

1.
Sicairos-Paez S, Hernández Pinto R. Phenomenological studies in the 2HDM and SM using Madgraph 5. Supl. Rev. Mex. Fis. [Internet]. 2022 Jun. 23 [cited 2022 Oct. 4];3(2):020723 1-5. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6315