Transverse momentum dependent parton distribution functions and QCD evolution equations
DOI:
https://doi.org/10.31349/SuplRevMexFis.3.020728Keywords:
Quantum Chromodynamics, High energy factorization, Transverse Momentum Dependent factorizationAbstract
We provide an overview over Transverse Momentum Dependent (TMD) Parton Distribution Functions (PDFs). While we will also comment on TMD PDFs in general, we will focus on their use for the description of hadronic reactions in the so-called low x limit. Here $x = M^2/s$ and $M$ is the hard scale of the process, while $\sqrt{s}$ is the center of mass energy of the reaction. We will explain why this are interesting quantities whose exploration serves a manifold purpose. In particular we will explain why these are interesting quantities both for the accurate description of LHC data and why exploration of such quantities is a central goal of the future Electron Ion Collider. In a second part of this talk we will then discuss how perturbative QCD allows us to formulate and solve differential equations, which describe the dependence of this TMD PDFs on various kinematic variables.
References
F. Gelis, Initial state and thermalization in the Color Glass Condensate framework, Int. J. Mod. Phys. E 24 (2015) 1530008, https://doi.org/10.1142/S0218301315300088.
F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, The Color Glass Condensate, Ann. Rev. Nucl. Part. Sci. 60 (2010) 463-489, https://doi.org/10.1146/annurev.nucl.010909.083629.
L. V. Gribov, E. M. Levin and M. G. Ryskin, Semihard Processes in QCD, Phys. Rept. 100 (1983) 1-150, https://doi.org/10.1016/0370-1573(83)90022-4.
L. D. McLerran and R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei, Phys. Rev. D 49 (1994) 2233-2241, https://doi.org/10.1103/PhysRevD.49.2233.
L. D. McLerran and R. Venugopalan, Gluon distribution functions for very large nuclei at small transverse momentum, Phys. Rev. D 49 (1994) 3352-3355, https://doi.org/10.1103/PhysRevD.49.3352.
A. Accardi et al., Electron Ion Collider: The Next QCD Frontier: Understanding the glue that binds us all, Eur. Phys. J. A 52 (2016) 268, https://doi.org/10.1140/epja/i2016-16268-9.
L. Zheng, E. C. Aschenauer, J. H. Lee and B. W. Xiao, Probing Gluon Saturation through Dihadron Correlations at an ElectronIon Collider, Phys. Rev. D 89 (2014) 074037, https://doi.org/10.1103/PhysRevD.89.074037.
F. Dominguez, C. Marquet, B. W. Xiao and F. Yuan, Universality of Unintegrated Gluon Distributions at small x, Phys. Rev. D 83 (2011) 105005, https://doi.org/10.1103/PhysRevD.83.105005.
J. Zhou, “The evolution of the small x gluon TMD, JHEP 06 (2016) 151, https://doi.org/10.1007/JHEP06(2016)151.
B. W. Xiao, F. Yuan and J. Zhou, “Transverse Momentum Dependent Parton Distributions at Small-x, Nucl. Phys. B 921 (2017) 104, https://doi.org/10.1016/j.nuclphysb.2017.05.012.
M. G. Echevarria, T. Kasemets, P. J. Mulders and C. Pisano, “QCD evolution of (un)polarized gluon TMDPDFs and the Higgs qT -distribution, JHEP 07 (2015) 158, [erratum: JHEP 05 (2017) 073] https://doi.org/10.1007/JHEP07(2015)158.
M. Hentschinski, Transverse momentum dependent gluon distribution within high energy factorization at next-to-leading order, Phys. Rev. D 104 (2021) 054014, https://doi.org/10.1103/PhysRevD.104.054014.
L. N. Lipatov, “Gauge invariant effective action for highenergy processes in QCD, Nucl. Phys. B452 (1995) 369-400, [arXiv:hep-ph/9502308 [hep-ph]].
L. N. Lipatov, “Small x physics in perturbative QCD, Phys. Rept. 286 (1997) 131-198, [hep-ph/9610276].
M. Hentschinski, Lipatov’s QCD high energy effective action: past and future, in “From the Past to the Future The Legacy of Lev Lipatov, edited by J. Bartels, V. Fadin, E. Levin, A. Levin, V. Kim, A. Sabio Vera, World Scientific, https://doi.org/10.1142/12127.
P. J. Mulders and J. Rodrigues, Transverse momentum dependence in gluon distribution and fragmentation functions, Phys. Rev. D 63 (2001) 094021, https://doi.org/10.1103/PhysRevD.63.094021.
X. d. Ji, J. P. Ma and F. Yuan, Transverse-momentumdependent gluon distributions and semi-inclusive processes at hadron colliders, JHEP 07 (2005) 020, https://doi.org/10.1088/1126-6708/2005/07/020.
J. Collins, Foundations of perturbative QCD, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 32 (2011) 1-624.
M. Hentschinski, K. Kutak and A. van Hameren, Forward Higgs production within high energy factorization in the heavy quark limit at next-to-leading order accuracy, Eur. Phys. J. C 81 (2021) 112, [erratum: Eur. Phys. J. C 81 (2021) 262] https://doi.org/10.1140/epjc/s10052-021-08902-6.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Martin Hentschinski (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Suplemento de la Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.