Multiplicity-Momentum Correlations in Relativistic Nuclear Collisions
DOI:
https://doi.org/10.31349/SuplRevMexFis.3.040906Keywords:
Nuclear collisionAbstract
We introduce a two-particle correlation observable that measures multiplicity-momentum correlations and may facilitate an estimate of the level of equilibration of the medium created in relativistic nuclear collisions. We calculate that multiplicity-momentum correlations should vanish in equilibrium in the Grand Canonical Ensemble, therefore non-zero measured values may indicate that the system has not reached local thermal equilibrium. Information about the level of equilibration of the system is important because many state-of-the-art models assume local equilibration either directly or through the use of an equation of state that makes this assumption. We make estimates of multiplicity-momentum correlations using PYTHIA/Angantyr and find positive values comparable in magnitude to well-measured correlations of transverse momentum fluctuations. We then outline a formalism that can use multiplicity-momentum correlations and correlations of transverse momentum fluctuations to quantify the level of partial thermalization of the system.
References
M. Cody, et al., Complementary Two-Particle Correlation Observables for Relativistic Nuclear Collisions (2021)
S. Gavin, G. Moschelli, and C. Zin, Boltzmann-Langevin Approach to Pre-equilibrium Correlations in Nuclear Collisions, Phys. Rev. C 95 (2017) 064901, 10.1103/PhysRevC.95. 064901
C. D. Zin, Dynamic fluctuations from hydrodynamics and kinetic theory in high energy collisions, Ph.D. thesis, Wayne State U., Detroit (2017).
Z. Mazloum, Correlations and dynamic fluctuations in high energy collisions, Ph.D. thesis, Wayne State U., Detroit (2022).
S. Jeon and V. Koch, Charged particle ratio fluctuation as a signal for QGP, Phys. Rev. Lett. 85 (2000) 2076, 10.1103/PhysRevLett.85.2076
M. Asakawa, U. W. Heinz, and B. Muller, Fluctuation probes of quark deconfinement, Phys. Rev. Lett. 85 (2000) 2072, 10.1103/PhysRevLett.85.2072
V. Koch, M. Bleicher, and S. Jeon, Event-by-event fluctuations and the QGP, Nucl. Phys. A 698 (2002) 261, 10.1016/S0375-9474(02)00716-9
J. Adams et al., Multiplicity fluctuations in Au+Au collisions at s(NN)**(1/2) = 130-GeV, Phys. Rev. C 68 (2003) 044905, 10.1103/PhysRevC.68.044905
M. Zhou and J. Jia, Centrality fluctuations in heavy-ion collisions, Phys. Rev. C 98 (2018) 044903, 10.1103/ PhysRevC.98.044903
H. Heiselberg and A. D. Jackson, Anomalous multiplicity fluctuations from phase transitions in heavy ion collisions, Phys. Rev. C 63 (2001) 064904, 10.1103/PhysRevC.63.064904
K. Adcox et al., Net charge fluctuations in Au+Au interactions at s**(1/2) = 130-GeV, Phys. Rev. Lett. 89 (2002) 082301, 10.1103/PhysRevLett.89.082301
J. Zaranek, Measures of charge fluctuations in nuclear collisions, Phys. Rev. C 66 (2002) 024905, 10.1103/PhysRevC.66.024905
S. Mrowczynski, Hadronic matter compressibility from event by event analysis of heavy ion collisions, Phys. Lett. B 430 (1998) 9, 10.1016/S0370-2693(98)00492-4
A. Adare et al., Charged hadron multiplicity fluctuations in Au+Au and Cu+Cu collisions from √ sNN = 22.5 to 200 GeV, Phys. Rev. C 78 (2008) 044902, 10.1103/PhysRevC.78.044902
M. Mukherjee, Event-by-event multiplicity fluctuations in PbPb collisions in ALICE, Acta Phys. Polon. Supp. 9 (2016) 283, 10.5506/APhysPolBSupp.9.283
F. Becattini, et al., Multiplicity fluctuations in the hadron gas with exact conservation laws, Phys. Rev. C 72 (2005) 064904, 10.1103/PhysRevC.72.064904
S. Gavin and C. Pruneau, Covariance of anti-proton yield and source size in nuclear collisions, Phys. Rev. C 61 (2000) 044901, 10.1103/PhysRevC.61.044901
S. Gavin and J. I. Kapusta, Kaon and pion fluctuations from small disoriented chiral condensates, Phys. Rev. C 65 (2002) 054910, 10.1103/PhysRevC.65.054910
S. Mrowczynski, Measuring charge fluctuations in high-energy nuclear collisions, Phys. Rev. C 66 (2002) 024904, 10.1103/PhysRevC.66.024904
C. Pruneau, S. Gavin, and S. Voloshin, Methods for the study of particle production fluctuations, Phys. Rev. C 66 (2002) 044904, 10.1103/PhysRevC.66.044904
H. Agakishiev et al., Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at √ sNN = 200 GeV, Phys. Lett. B 704 (2011) 467, 10.1016/j.physletb.2011.09.075
S. Acharya et al., Longitudinal and azimuthal evolution of two-particle transverse momentum correlations in Pb-Pb collisions at √ sNN = 2.76 TeV, Phys. Lett. B 804 (2020) 135375, 10.1016/j.physletb.2020.135375
V. González, Characterizing the medium created in Pb–Pb collisions at by means of the evolution of two-particle transverse momentum correlations, J. Phys. Conf. Ser. 1602 (2020) 012010, 10.1088/1742-6596/1602/1/012010
V. Gonzalez, et al., Extraction of the specific shear viscosity of quark-gluon plasma from two-particle transverse momentum correlations (2020)
V. Gonzalez, et al., Effect of centrality bin width corrections on two-particle number and transverse momentum differential correlation functions, Phys. Rev. C 99 (2019) 034907, 10.1103/PhysRevC.99.034907
N. Magdy, et al., Azimuthal dependence of two-particle transverse momentum current correlations (2021)
S. Gavin, G. Moschelli, and C. Zin, Rapidity Correlation Structure in Nuclear Collisions, Phys. Rev. C 94 (2016) 024921, 10.1103/PhysRevC.94.024921
G. Moschelli and S. Gavin, Measuring the Rate of Isotropization of Quark-Gluon Plasma Using Rapidity Correlations, Nucl. Phys. A 982 (2019) 311, 10.1016/j.nuclphysa.2018.11.018
G. Moschelli and S. Gavin, Extracting the Shear Relaxation Time of Quark–Gluon Plasma from Rapidity Correlations, Acta Phys. Polon. B 50 (2019) 1139, 10.5506/APhysPolB.50.1139
H. Appelshäuser et al., Event-by-event fluctuations of average transverse momentum in central Pb + Pb collisions at 158- GeV per nucleon, Phys. Lett. B 459 (1999) 679, 10.1016/S0370-2693(99)00673-5
T. Anticic et al., Transverse momentum fluctuations in nuclear collisions at 158-A-GeV, Phys. Rev. C 70 (2004) 034902, 10.1103/PhysRevC.70.034902
J. Adams et al., Event by event < p(t) > fluctuations in Au - Au collisions at s(NN)**(1/2) = 130-GeV, Phys. Rev. C 71 (2005) 064906, 10.1103/PhysRevC.71.064906
J. Adams et al., Incident energy dependence of pt correlations at RHIC, Phys. Rev. C 72 (2005) 044902, 10.1103/PhysRevC.72.044902
D. Adamova et al., Event by event fluctuations of the mean transverse momentum in 40, 80 and 158 A GeV / c Pb - Au collisions, Nucl. Phys. A 727 (2003) 97, 10.1016/j.nuclphysa.2003.07.018
J. Adams et al., Transverse-momentum p(t) correlations on (eta, phi) from mean-p(t) fluctuations in Au-Au collisions at s(NN)**1/2 = 200-GeV, J. Phys. G 32 (2006) L37, 10.1088/0954-3899/32/6/L02
J. Adams et al., The Energy dependence of pt angular correlations inferred from mean-p(t) fluctuation scale dependence in heavy ion collisions at the SPS and RHIC, J. Phys. G 34 (2007) 451, 10.1088/0954-3899/34/3/004
K. Adcox et al., Event-by-event fluctuations in mean p(T) and mean e(T) in s(NN)**(1/2) = 130-GeV Au+Au collisions, Phys. Rev. C 66 (2002) 024901, 10.1103/PhysRevC.66.024901
S. Adler et al., Measurement of nonrandom event by event fluctuations of average transverse momentum in s(NN)**(1/2) = 200-GeV Au+Au and p+p collisions, Phys. Rev. Lett. 93 (2004) 092301, 10.1103/PhysRevLett.93.092301
B. B. Abelev et al., Event-by-event mean pT fluctuations in pp and Pb-Pb collisions at the LHC, Eur. Phys. J. C 74 (2014) 3077, 10.1140/epjc/s10052-014-3077-y
S. Heckel, Event-by-event mean pT fluctuations in pp and Pb–Pb collisions at the LHC, EPJ Web Conf. 90 (2015) 08006, 10.1051/epjconf/20159008006
J. Adam et al., Flow dominance and factorization of transverse momentum correlations in Pb-Pb collisions at the LHC, Phys. Rev. Lett. 118 (2017) 162302, 10.1103/PhysRevLett.118.162302
S. Acharya et al., Two particle differential transverse momentum and number density correlations in p-Pb and Pb-Pb at the LHC, Phys. Rev. C 100 (2019) 044903, 10.1103/PhysRevC.100.044903
J. Adam et al., Collision-energy dependence of pt correlations in Au + Au collisions at energies available at the BNL Relativistic Heavy Ion Collider, Phys. Rev. C 99 (2019) 044918, 10.1103/PhysRevC.99.044918
S. Gavin and G. Moschelli, Fluctuation Probes of Early-Time Correlations in Nuclear Collisions, Phys. Rev. C 85 (2012) 014905, 10.1103/PhysRevC.85.014905
S. Gavin, Partial thermalization in ultrarelativistic heavy ion collisions, Nucl. Phys. B351 (1991) 561, 10.1016/S0550-3213(05)80033-1
S. Gavin, Traces of thermalization from transverse momentum fluctuations in nuclear collisions, Phys. Rev. Lett. 92 (2004) 162301, 10.1103/PhysRevLett.92.162301
T. Sjöstrand, et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159, 10.1016/j.cpc.2015.01.024
C. Bierlich, et al., The Angantyr model for Heavy-Ion Collisions in PYTHIA8, JHEP 10 (2018) 134, 10.1007/JHEP10(2018)134
X. Luo, et al., Volume fluctuation and auto-correlation effects in the moment analysis of net-proton multiplicity distributions in heavy-ion collisions, J. Phys. G 40 (2013) 105104, 10.1088/0954-3899/40/10/105104
F. Cooper and G. Frye, Comment on the Single Particle Distribution in the Hydrodynamic and Statistical Thermodynamic Models of Multiparticle Production, Phys. Rev. D 10 (1974) 186, 10.1103/PhysRevD.10.186
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Mary Cody, Sean Gavin, Brendan Koch, Mark Kocherovsky, Zoulfekar Mazloum, George Moschelli (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Suplemento de la Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.