QCD Equilibrium and Dynamical Properties from Holographic Black Holes


  • Joaquin Grefa University of Houston
  • Mauricio Hippert University of Illinois at Urbana-Champaign
  • Jorge Noronha University of Illinois at Urbana-Champaign
  • Jacquelyn Noronha-Hostler University of Illinois at Urbana-Champaign
  • Israel Portillo University of Houston
  • Claudia Ratti University of Houston
  • Romulo Rougemont Universidade Federal de Goiás




QCD, Equation of State, Transport coefficients, AdS/CFT correspondence, Holography, Phase transitions, Phase diagram.


By using gravity/gauge correspondence, we employ an Einstein-Maxwell-Dilaton model to compute the equilibrium and out-of-equilibrium properties of a hot and baryon rich strongly coupled quark-gluon plasma. The family of 5-dimensional holographic black holes, which are constrained to mimic the lattice QCD equation of state at zero density, is used to investigate the temperature and baryon chemical potential dependence of the equation of state. We also obtained the baryon charge conductivity, and the bulk and shear viscosities with a particular focus on the behavior of these observables on top of the critical end point and the line of first order phase transition predicted by the model.


E. V. Shuryak, Quantum Chromodynamics and the Theory of Superdense Matter, Phys. Rept. 61 (1980) 71, 10.1016/0370-1573(80)90105-2

Y. Aoki, et al., The Order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature 443 (2006) 675, 10.1038/nature05120

R. Bellwied, et al., The QCD phase diagram from analytic continuation, Phys. Lett. B 751 (2015) 559, 10.1016/j.physletb.2015.11.011

M. A. Stephanov, K. Rajagopal, and E. V. Shuryak, Signatures of the tricritical point in QCD, Phys. Rev. Lett. 81 (1998) 4816, 10.1103/PhysRevLett.81.4816

L. Adamczyk et al., Energy Dependence of Moments of Netproton Multiplicity Distributions at RHIC, Phys. Rev. Lett. 112 (2014) 032302, 10.1103/PhysRevLett.112.032302

S. Borsanyi et al., Calculation of the axion mass based on high-temperature lattice quantum chromodynamics, Nature 539 (2016) 69, 10.1038/nature20115

O. Philipsen, The QCD equation of state from the lattice, Prog. Part. Nucl. Phys. 70 (2013) 55, 10.1016/j.ppnp.2012.09.003

S. Borsanyi, et al., Lattice QCD equation of state at finite chemical potential from an alternative expansion scheme (2021)

U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Ann. Rev. Nucl. Part. Sci. 63 (2013) 123, 10.1146/annurev-nucl-102212-170540

C. Ratti, Lattice QCD and heavy ion collisions: a review of recent progress, Reports on Progress in Physics 81 (2018) 084301, 10.1088/1361-6633/aabb97

T. Dore, J. Noronha-Hostler, and E. McLaughlin, Far-fromequilibrium search for the QCD critical point, Phys. Rev. D 102 (2020) 074017, 10.1103/PhysRevD.102.074017

G. S. Denicol, et al., Net baryon diffusion in fluid dynamic simulations of relativistic heavy-ion collisions, Phys. Rev. C 98 (2018) 034916, 10.1103/PhysRevC.98.034916

J. M. Maldacena, The Large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231, 10.1023/A:1026654312961

S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105, 10.1016/S0370-2693(98)00377-3

E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253, 10.4310/ATMP.1998.v2.n2.a2

O. DeWolfe, S. S. Gubser, and C. Rosen, A holographic critical point, Phys. Rev. D 83 (2011) 086005, 10.1103/PhysRevD.83.086005

R. Critelli, et al., Critical point in the phase diagram of primordial quark-gluon matter from black hole physics, Phys. Rev. D 96 (2017) 096026, 10.1103/PhysRevD.96.096026

O. DeWolfe, S. S. Gubser, and C. Rosen, Dynamic critical phenomena at a holographic critical point, Phys. Rev. D 84 (2011) 126014, 10.1103/PhysRevD.84.126014

R. Rougemont, et al., Dynamical versus equilibrium properties of the QCD phase transition: A holographic perspective, Phys. Rev. D 96 (2017) 014032, 10.1103/PhysRevD.96.014032

J. Grefa, et al., Hot and dense quark-gluon plasma thermodynamics from holographic black holes, Phys. Rev. D 104 (2021) 034002, 10.1103/PhysRevD.104.034002

J. Grefa, et al., Transport coefficients of the quark-gluon plasma at the critical point and across the first-order line (2022)

S. Borsanyi, et al., Full result for the QCD equation of state with 2+1 flavors, Phys. Lett. B 730 (2014) 99, 10.1016/j. physletb.2014.01.007

R. Bellwied, et al., Fluctuations and correlations in high temperature QCD, Phys. Rev. D 92 (2015) 114505, 10.1103/PhysRevD.92.114505

P. C. Hohenberg and B. I. Halperin, Theory of Dynamic Critical Phenomena, Rev. Mod. Phys. 49 (1977) 435, 10.1103/RevModPhys.49.435

A. Monnai, S. Mukherjee, and Y. Yin, Phenomenological Consequences of Enhanced Bulk Viscosity Near the QCD Critical Point, Phys. Rev. C 95 (2017) 034902, 10.1103/PhysRevC.95.034902

A. Buchel and C. Pagnutti, Transport at criticality, Nucl. Phys. B 834 (2010) 222, 10.1016/j.nuclphysb.2010.03.016

D. T. Son and M. A. Stephanov, Dynamic universality class of the QCD critical point, Phys. Rev. D 70 (2004) 056001, 10.1103/PhysRevD.70.056001

M. Natsuume and T. Okamura, Dynamic universality class of large-N gauge theories, Phys. Rev. D 83 (2011) 046008, 10.1103/PhysRevD.83.046008

G. S. Denicol, et al., Fluid behavior of a baryon-rich hadron resonance gas, Phys. Rev. C 88 (2013) 064901, 10.1103/PhysRevC.88.064901

J. Liao and V. Koch, On the Fluidity and Super-Criticality of the QCD matter at RHIC, Phys. Rev. C 81 (2010) 014902, 10.1103/PhysRevC.81.014902




How to Cite

Grefa J, Hippert M, Noronha J, Noronha-Hostler J, Portillo I, Ratti C, Rougemont R. QCD Equilibrium and Dynamical Properties from Holographic Black Holes. Supl. Rev. Mex. Fis. [Internet]. 2022 Dec. 10 [cited 2023 Feb. 6];3(4):040910 1-6. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6831