Initializing BSQ with Open-Source ICCING

Authors

  • Patrick Carzon University of Illinois at Urbana-Champaign
  • Mauricio Martinez North Carolina State University
  • Matthew D. Sievert New Mexico State University
  • Douglas E. Wertepny Ben-Gurion University of the Negev
  • Jacquelyn Noronha-Hostler University of Illinois at Urbana-Champaign

DOI:

https://doi.org/10.31349/SuplRevMexFis.3.040912

Keywords:

ICCING

Abstract

While it is well known that there is a significant amount of conserved charges in the initial state of nuclear collisions, the production of these due to gluon splitting has yet to be thoroughly investigated. The ICCING (Initial Conserved Charges in Nuclear Geometry) algorithm reconstructs these quark distributions, providing conserved strange, baryon, and electric charges, by sampling a given model for the g → qq¯ splitting function over the initial energy density, which is valid at top collider energies, even when µB = 0. The ICCING algorithm includes fluctuations in the gluon longitudinal momenta, a structure that supports the implementation of dynamical processes, and the c++ version is now open-source. A full analysis of parameter choices on the model has been done to quantify the effect these have on the underlying physics. We find there is a sustained difference across the different charges that indicates sensitivity to hot spot geometry.

References

F. G. Gardim, et al., Directed flow at mid-rapidity in eventby-event hydrodynamics, Phys. Rev. C 83 (2011) 064901, 10.1103/PhysRevC.83.064901

F. G. Gardim, et al., Anisotropic flow in event-by-event ideal hydrodynamic simulations of √ sNN = 200 GeV Au+Au collisions, Phys. Rev. Lett. 109 (2012) 202302, 10.1103/PhysRevLett.109.202302

C. Gale, et al., Event-by-event anisotropic flow in heavyion collisions from combined Yang-Mills and viscous fluid dynamics, Phys. Rev. Lett. 110 (2013) 012302, 10.1103/PhysRevLett.110.012302

B. Schenke, C. Shen, and P. Tribedy, Hybrid Color Glass Condensate and hydrodynamic description of the Relativistic Heavy Ion Collider small system scan, Phys. Lett. B 803 (2020) 135322, 10.1016/j.physletb.2020.135322

J. Liu, C. Shen, and U. Heinz, Pre-equilibrium evolution effects on heavy-ion collision observables, Phys. Rev. C 91 (2015) 064906, 10.1103/PhysRevC.91.064906

A. Kurkela, et al., Matching the Nonequilibrium Initial Stage of Heavy Ion Collisions to Hydrodynamics with QCD Kinetic Theory, Phys. Rev. Lett. 122 (2019) 122302, 10.1103/PhysRevLett.122.122302

C. Plumberg, et al., Causality violations in realistic simulations of heavy-ion collisions (2021)

C. Chiu and C. Shen, Exploring theoretical uncertainties in the hydrodynamic description of relativistic heavy-ion collisions, Phys. Rev. C 103 (2021) 064901, 10.1103/PhysRevC.103.064901

K. Werner, Strings, pomerons, and the venus model of hadronic interactions at ultrarelativistic energies, Phys. Rept. 232 (1993) 87, 10.1016/0370-1573(93)90078-R

K. Itakura, et al., Baryon stopping and valence quark distribution at small x, Nucl. Phys. A 730 (2004) 160, 10.1016/j.nuclphysa.2003.10.016

C. Shen and B. Schenke, Dynamical initial state model for relativistic heavy-ion collisions, Phys. Rev. C 97 (2018) 024907, 10.1103/PhysRevC.97.024907

Y. Akamatsu, et al., Dynamically integrated transport approach for heavy-ion collisions at high baryon density, Phys. Rev. C 98 (2018) 024909, 10.1103/PhysRevC.98.024909

J. Mohs, S. Ryu, and H. Elfner, Particle Production via Strings and Baryon Stopping within a Hadronic Transport Approach, J. Phys. G 47 (2020) 065101, 10.1088/1361-6471/ab7bd1

I. A. Karpenko, et al., Estimation of the shear viscosity at finite net-baryon density from A + A collision data at √ sNN = 7.7 − 200 GeV, Phys. Rev. C 91 (2015) 064901, 10.1103/PhysRevC.91.064901

S. Borsanyi, et al., Higher order fluctuations and correlations of conserved charges from lattice QCD, JHEP 10 (2018) 205, 10.1007/JHEP10(2018)205

J. Noronha-Hostler, et al., Lattice-based equation of state at finite baryon number, electric charge and strangeness chemical potentials, Phys. Rev. C 100 (2019) 064910, 10.1103/PhysRevC.100.064910

A. Monnai, B. Schenke, and C. Shen, Equation of state at finite densities for QCD matter in nuclear collisions, Phys. Rev. C 100 (2019) 024907, 10.1103/PhysRevC.100.024907

A. Monnai, S. Mukherjee, and Y. Yin, Phenomenological Consequences of Enhanced Bulk Viscosity Near the QCD Critical Point, Phys. Rev. C 95 (2017) 034902, 10.1103/PhysRevC.95.034902

A. Bazavov et al., Chiral crossover in QCD at zero and non-zero chemical potentials, Phys. Lett. B 795 (2019) 15, 10.1016/j.physletb.2019.05.013

R. Critelli, et al., Critical point in the phase diagram of primordial quark-gluon matter from black hole physics, Phys. Rev. D 96 (2017) 096026, 10.1103/PhysRevD.96.096026

P. Parotto, et al., QCD equation of state matched to lattice data and exhibiting a critical point singularity, Phys. Rev. C 101 (2020) 034901, 10.1103/PhysRevC.101.034901

N. Demir and S. A. Bass, Shear-Viscosity to Entropy-Density Ratio of a Relativistic Hadron Gas, Phys. Rev. Lett. 102 (2009) 172302, 10.1103/PhysRevLett.102.172302

G. S. Denicol, et al., Fluid behavior of a baryon-rich hadron resonance gas, Phys. Rev. C 88 (2013) 064901, 10.1103/PhysRevC.88.064901

G. S. Denicol, et al., Net baryon diffusion in fluid dynamic simulations of relativistic heavy-ion collisions, Phys. Rev. C 98 (2018) 034916, 10.1103/PhysRevC.98.034916

G. P. Kadam and H. Mishra, Bulk and shear viscosities of hot and dense hadron gas, Nucl. Phys. A 934 (2014) 133, 10.1016/j.nuclphysa.2014.12.004

M. A. Stephanov, K. Rajagopal, and E. V. Shuryak, Eventby-event fluctuations in heavy ion collisions and the QCD critical point, Phys. Rev. D 60 (1999) 114028, 10.1103/PhysRevD.60.114028

M. Stephanov and Y. Yin, Hydrodynamics with parametric slowing down and fluctuations near the critical point, Phys. Rev. D 98 (2018) 036006, 10.1103/PhysRevD.98.036006

L. Jiang, P. Li, and H. Song, Correlated fluctuations near the QCD critical point, Phys. Rev. C 94 (2016) 024918, 10.1103/PhysRevC.94.024918

S. Mukherjee, R. Venugopalan, and Y. Yin, Universal offequilibrium scaling of critical cumulants in the QCD phase diagram, Phys. Rev. Lett. 117 (2016) 222301, 10.1103/PhysRevLett.117.222301

M. Nahrgang, et al., Diffusive dynamics of critical fluctuations near the QCD critical point, Phys. Rev. D 99 (2019) 116015, 10.1103/PhysRevD.99.116015

X. An, et al., Relativistic Hydrodynamic Fluctuations, Phys. Rev. C 100 (2019) 024910, 10.1103/PhysRevC.100.024910

L. Du and U. Heinz, (3+1)-dimensional dissipative relativistic fluid dynamics at non-zero net baryon density, Comput. Phys. Commun. 251 (2020) 107090, 10.1016/j.cpc.2019.107090

P. Batyuk, et al., Three-fluid Hydrodynamics-based Event Simulator Extended by UrQMD final State interactions (THESEUS) for FAIR-NICA-SPSBES/RHIC energies, EPJ Web Conf. 182 (2018) 02056, 10.1051/epjconf/201818202056

J. Takahashi, et al., Topology studies of hydrodynamics using two particle correlation analysis, Phys. Rev. Lett. 103 (2009) 242301, 10.1103/PhysRevLett.103.242301

B. Alver and G. Roland, Collision geometry fluctuations and triangular flow in heavy-ion collisions, Phys. Rev. C 81 (2010) 054905, 10.1103/PhysRevC.82.039903

F. D. Aaron et al., Combined Measurement and QCD Analysis of the Inclusive e+- p Scattering Cross Sections at HERA, JHEP 01 (2010) 109, 10.1007/JHEP01(2010)109

E. Shuryak and I. Zahed, Prompt quark production by exploding sphalerons, Phys. Rev. D 67 (2003) 014006, 10.1103/PhysRevD.67.014006

P. Carzon, et al., Monte Carlo event generator for initial conditions of conserved charges in nuclear geometry, Phys. Rev. C 105 (2022) 034908, 10.1103/PhysRevC.105.034908

M. Martinez, et al., Initial state fluctuations of QCD conserved charges in heavy-ion collisions (2019)

J. S. Moreland, J. E. Bernhard, and S. A. Bass, Alternative ansatz to wounded nucleon and binary collision scaling in highenergy nuclear collisions, Phys. Rev. C 92 (2015) 011901, 10.1103/PhysRevC.92.011901

S. A. Bass, J. E. Bernhard, and J. S. Moreland, Determination of Quark-Gluon-Plasma Parameters from a Global Bayesian Analysis, Nucl. Phys. A 967 (2017) 67, 10.1016/j.nuclphysa.2017.05.052

J. S. Moreland, J. E. Bernhard, and S. A. Bass, Bayesian calibration of a hybrid nuclear collision model using p-Pb and Pb-Pb data at energies available at the CERN Large Hadron Collider, Phys. Rev. C 101 (2020) 024911, 10.1103/PhysRevC.101.024911

M. Martinez, M. D. Sievert, and D. E. Wertepny, Toward Initial Conditions of Conserved Charges Part I: Spatial Correlations of Quarks and Antiquarks, JHEP 07 (2018) 003, 10.1007/JHEP07(2018)003

K. J. Golec-Biernat and M. Wusthoff, Saturation effects in deep inelastic scattering at low Q**2 and its implications on diffraction, Phys. Rev. D 59 (1998) 014017, 10.1103/PhysRevD.59.014017

J. E. Bernhard, et al., Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium, Phys. Rev. C 94 (2016) 024907, 10.1103/PhysRevC.94.024907

P. Alba, et al., Effect of the QCD equation of state and strange hadronic resonances on multiparticle correlations in heavy ion collisions, Phys. Rev. C 98 (2018) 034909, 10.1103/PhysRevC.98.034909

G. Giacalone, et al., Hydrodynamic predictions for 5.44 TeV Xe+Xe collisions, Phys. Rev. C 97 (2018) 034904, 10.1103/PhysRevC.97.034904

J. E. Bernhard, J. S. Moreland, and S. A. Bass, Bayesian estimation of the specific shear and bulk viscosity of quark–gluon plasma, Nature Phys. 15 (2019) 1113, 10.1038/s41567-019-0611-8

H. Niemi, et al., Event-by-event distributions of azimuthal asymmetries in ultrarelativistic heavy-ion collisions, Phys. Rev. C 87 (2013) 054901, 10.1103/PhysRevC.87.054901

P. Carzon, et al., Possible octupole deformation of 208Pb and the ultracentral v2 to v3 puzzle, Phys. Rev. C 102 (2020) 054905, 10.1103/PhysRevC.102.054905

J. Noronha-Hostler, et al., Linear and cubic response to the initial eccentricity in heavy-ion collisions, Phys. Rev. C 93 (2016) 014909, 10.1103/PhysRevC.93.014909

M. D. Sievert and J. Noronha-Hostler, CERN Large Hadron Collider system size scan predictions for PbPb, XeXe, ArAr, and OO with relativistic hydrodynamics, Phys. Rev. C 100 (2019) 024904, 10.1103/PhysRevC.100.024904

S. Rao, M. Sievert, and J. Noronha-Hostler, Baseline predictions of elliptic flow and fluctuations for the RHIC Beam Energy Scan using response coefficients, Phys. Rev. C 103 (2021) 034910, 10.1103/PhysRevC.103.034910

Downloads

Published

2022-12-10

How to Cite

1.
Carzon P, Martinez M, Sievert MD, Wertepny DE, Noronha-Hostler J. Initializing BSQ with Open-Source ICCING. Supl. Rev. Mex. Fis. [Internet]. 2022 Dec. 10 [cited 2024 Mar. 28];3(4):040912 1-8. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6833