Synthesis of light nuclei in hadronic collisions


  • Harald Appelshäuser Goethe-Universität Frankfurt



light (anti)nuclei, (anti)hypernuclei, hypertriton, statistical hadronization model, coalescence, femtoscopy, hadron-hadron 14 interactions


Light-nuclei production yields in heavy-ion collisions are well described in the framework of Statistical Hadronization Models (SHM) but a thorough understanding of the underlying dynamics is still missing. In a complementary approach, synthesis of light nuclei can be modeled in terms of final-state coalescence of nucleons. While yielding an equally good description in central heavy-ion collisions, coalescence predictions are substantially different to those from SHM in small collision systems, in particular for the loosely bound hypertriton. This should allow a firm distinction of the two production scenarios in small collision systems. Comprehensive data on light-nuclei and hypertriton production in pp and p–Pb collisions from the ALICE Collaboration are presented in this contribution. Complementary to the measurement of production yields, the dynamics of nuclear cluster formation can be inferred from the measurement of final-state correlations of nucleons and light nuclei. Preliminary p-d correlation results from high-multiplicity pp collisions at √ 11 s = 13 TeV are compared to calculations based on experimental scattering parameters and discussed in the context of nuclear cluster formation.


A.Andronic, P. Braun-Munzinger, J. Stachel, H. Stöcker, Production of light nuclei, hypernuclei and their antiparticles in relativistic nuclear collisions, Phys. Lett. B697 (2011) 203,

S. Wheaton and J. Cleymans, THERMUS: A Thermal model package for ROOT, Comput. Phys. Commun. 180 (2009) 84,

A. Andronic, P. Braun-Munzinger, and J. Stachel, Thermal hadron production in relativistic nuclear collisions: The Hadron mass spectrum, the horn, and the QCD phase transition, Phys. Lett. B673 (2009) 142,,

A. Andronic, et al., Decoding the phase structure of QCD via particle production at high energy, Nature 561 (2018) 321,

G. Torrieri, et al., SHARE: Statistical hadronization with resonances, Comput. Phys. Commun. 167 (2005) 229,

G. Torrieri, et al., SHAREv2: Fluctuations and a comprehensive treatment of decay feed-down, Comput. Phys. Commun. 175 (2006) 635,

M. Petran, et al., SHARE with CHARM, Comput. Phys. Commun. 185 (2014) 2056, cpc.2014.02.026

A. Bazavov, et al., HotQCD Collaboration, Chiral crossover in QCD at zero and non-zero chemical potentials, Phys. Lett. B 795 (2019) 15,

R. Scheibl and U. Heinz, Coalescence and flow in ultrarelativistic heavy ion collisions, Physical Review C 59 (1999) 1585,

J. I. Kapusta, Mechanisms for deuteron production in relativistic nuclear collisions, Phys. Rev. C21 (1980) 1301,

K.-J. Sun, C. M. Ko, B. Donigus, Suppression of light nuclei ¨ production in collisions of small systems at the Large Hadron Collider, Phys. Lett. B792 (2019) 132,

F. Bellini and A. P. Kalweit, Testing production scenarios for (anti-)(hyper-)nuclei and exotica at energies available at the CERN Large Hadron Collider, Phys. Rev. C 99 (2019) 054905,

E. Bartsch, these proceedings.

V. Vovchenko, B. Donigus, H. Stöcker, Multiplicity dependence of light nuclei production at LHC energies in the canonical statistical model, Phys. Lett. B785 (2018) 171,

ALICE Collaboration, S. Acharya et al., Production of light (anti)nuclei in pp collisions at √ s = 13 TeV, JHEP 01 (2022) 106,

ALICE Collaboration, E. Bartsch et al., New results of light (anti-)(hyper-)nuclei production and hypertriton lifetime in Pb–Pb collisions at the LHC, Nucl. Phys. A 1005 (2021) 121791,

ALICE Collaboration, F. Mazzaschi et al., Quark Matter Conference 2022.

ALICE Collaboration, S. Acharya et al., Phys. Rev. Lett. 128 (2022) 25, 252003,

ALICE Collaboration, P. Fecchio et al., Strange Quark Matter Conference 2021.

ALICE Collaboration, S. Acharya et al., 3 ΛH and 3 Λ¯H¯ production in Pb-Pb collisions at √ sNN = 2.76 TeV, Phys. Lett. B 754 (2016) 360-372,

M. Lisa, S. Pratt, R. Soltz, U. Wiedemann, Femtoscopy in relativistic heavy ion collisions, Ann. Rev. Nucl. Part. Sci. 55 (2005) 357-402,

ALICE Collaboration, S. Acharya et al., Investigation of the p-Σ 0 interaction via femtoscopy in pp collisions, Phys. Lett. B 805 (2020) 135419,

R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, An Accurate nucleon-nucleon potential with charge independence breaking, Phys. Rev. C 51 (1995) 38-51,

ALICE Collaboration, S. Acharya et al., p-p, p-Λ and Λ-Λ correlations studied via femtoscopy in pp reactions at √ s = 7 TeV, Phys. Rev. C 99 (2019) 2, 024001,

ALICE Collaboration, S. Acharya, et al., Unveiling the strong interaction among hadrons at the LHC, Nature 588 (2020) 232-238, Nature 590 (2021) E13 (erratum),,

ALICE Collaboration, S. Acharya et al., Scattering studies with low-energy kaon-proton femtoscopy in proton-proton collisions at the LHC, Phys. Rev. Lett. 124 (2020) 9, 092301,

ALICE Collaboration, S. Acharya et al., Kaon-proton strong interaction at low relative momentum via femtoscopy in Pb-Pb collisions at the LHC, Phys. Lett. B 822 (2021) 136708,

ALICE Collaboration, S. Acharya et al., Exploring the NΛ-NΣ coupled system with high precision correlation techniques at the LHC, Phys. Lett. B 833 (2022) 137272,

ALICE Collaboration, S. Acharya et al., Experimental Evidence for an Attractive p-φ Interaction, Phys. Rev. Lett. 127 (2021) 17, 172301,

ALICE Collaboration, S. Acharya et al., First study of the two-body scattering involving charm hadrons,

R. Lednicky and V.L. Lyuboshits, Final State Interaction Effect on Pairing Correlations Between Particles with Small Relative Momenta, Sov.J.Nucl.Phys. 35 (1982) 770, Yad.Fiz. 35 (1981) 1316-1330.

ALICE Collaboration, S. Acharya et al., Search for a common baryon source in high-multiplicity pp collisions at the LHC, Phys. Lett. B 811 (2020) 135849,




How to Cite

Appelshäuser H. Synthesis of light nuclei in hadronic collisions. Supl. Rev. Mex. Fis. [Internet]. 2022 Dec. 10 [cited 2023 Feb. 6];3(4):040918 1-6. Available from: