Influence of heavy resonances in SMASH


  • J. Salinas San Martín University of Illinois at Urbana-Champaign
  • J. Noronha-Hostler University of Illinois at Urbana-Champaign
  • H. Elfner GSI Helmholtzzentrum für Schwerionenforschung
  • J. Hammelmann Goethe University
  • R. Hirayama Goethe University



Heavy-ion collision, Resonances, Equation of State, SMASH


Recent lattice QCD results, comparing to a hadron resonance gas model, have shown the need for hundreds of particles in hadronic models. These extra particles influence both the equation of state and hadronic interactions within hadron transport models. Here, we introduce the PDG21+ particle list, which contains the most up-to-date database of particles and their properties. We then convert all particles decays into 2 body decays so that they are compatible with SMASH in order to produce a more consistent description of a heavy-ion collision.


R. Hagedorn, Statistical thermodynamics of strong interactions at high energies, Nuovo Cimento Suppl. 3 (1965) 147

W. Broniowski and W. Florkowski, Different Hagedorn temperatures for mesons and baryons from experimental mass spectra, compound hadrons, and combinatorial saturation, Phys. Lett. B 490 (2000) 223,

J. Noronha-Hostler, Implications of Missing Resonances in Heavy Ions Collisions, In Excited Hyperons in QCD Thermodynamics at Freeze-Out (2016) pp. 118–127.

P. Man Lo, et al., Missing baryonic resonances in the Hagedorn spectrum, Eur. Phys. J. A 52 (2016) 235,

P. Zyla et al., Review of Particle Physics, Prog. Theor. Exp. Phys. 2020 (2020) 083C01,

J. S. Moreland and R. A. Soltz, Hydrodynamic simulations of relativistic heavy-ion collisions with different lattice quantum chromodynamics calculations of the equation of state, Phys. Rev. C 93 (2016) 044913,

P. Alba, et al., Effect of the QCD equation of state and strange hadronic resonances on multiparticle correlations in heavy ion collisions, Phys. Rev. C 98 (2018) 034909,

J. M. Karthein, et al., Strangeness-neutral equation of state for QCD with a critical point, Eur. Phys. J. Plus 136 (2021) 621,

J. Weil, et al., Particle production and equilibrium properties within a new hadron transport approach for heavy-ion collisions, Phys. Rev. C 94 (2016) 054905,

D. Oliinychenko, et al., smash-transport/smash: SMASH-2.1 (2021),

J. Staudenmaier, N. Kübler, and H. Elfner, Particle production in AgAg collisions at EKin = 1.58A GeV within a hadronic transport approach, Phys. Rev. C 103 (2021) 044904,

J. Mohs, S. Ryu, and H. Elfner, Particle Production via Strings and Baryon Stopping within a Hadronic Transport Approach, J. Phys. G 47 (2020) 065101,

A. Schäfer, et al., A Non-Equilibrium Approach to Photon Emission from the Late Stages of Relativistic Heavy-Ion Collisions, Nucl. Phys. A 1005 (2021) 121772,

D. Oliinychenko, C. Shen, and V. Koch, Deuteron production in AuAu collisions at √ sNN =7–200 GeV via pion catalysis, Phys. Rev. C 103 (2021) 034913,

H. Elfner, et al., Jet quenching in the hadron gas: an exploratory study, PoS HardProbes2020 (2021) 155,

A. Sorensen and V. Koch, Phase transitions and critical behavior in hadronic transport with a relativistic density functional equation of state, Phys. Rev. C 104 (2021) 034904,

J. Staudenmaier, et al., Deuteron production in relativistic heavy ion collisions via stochastic multiparticle reactions, Phys. Rev. C 104 (2021) 034908,

A. Schäfer, et al., Out-of-equilibrium photon production in the late stages of relativistic heavy-ion collisions, Phys. Rev. C 105 (2022) 044910,

T. Reichert, et al., Comparison of heavy ion transport simulations: Ag + Ag collisions at Elab = 1.58A GeV, J. Phys. G 49 (2022) 055108,

A. Schäfer, et al., Particle production in a hybrid approach for a beam energy scan of Au+Au/Pb+Pb collisions between √ sNN = 4.3 GeV and √ sNN = 200.0 GeV (2021) arXiv:2112.08724

J. Hammelmann and H. Elfner, Impact of hadronic interactions and conservation laws on cumulants of conserved charges in a dynamical model (2022) arXiv:2202.11417

R. Hirayama, J. Staudenmaier, and H. Elfner, Effective spectral function of vector mesons via lifetime analysis (2022) arXiv:2206.15166

J. Noronha-Hostler, J. Noronha, and C. Greiner, Transport Coefficients of Hadronic Matter near T(c), Phys. Rev. Lett. 103 (2009) 172302,

J. Noronha-Hostler, J. Noronha, and C. Greiner, Hadron Mass Spectrum and the Shear Viscosity to Entropy Density Ratio of Hot Hadronic Matter, Phys. Rev. C 86 (2012) 024913,

J. Rais, K. Gallmeister, and C. Greiner, Shear viscosity to entropy density ratio of Hagedorn states, Phys. Rev. D 102 (2020) 036009,

E. McLaughlin, et al., Building a testable shear viscosity across the QCD phase diagram, Phys. Rev. C 105 (2022) 024903,

J. Noronha-Hostler, et al., Elliptic Flow Suppression due to Hadron Mass Spectrum, Phys. Rev. C 89 (2014) 054904,

P. Alba, et al., Constraining the hadronic spectrum through QCD thermodynamics on the lattice, Phys. Rev. D 96 (2017) 034517,

D. Devetak, et al., Global fluid fits to identified particle transverse momentum spectra from heavy-ion collisions at the Large Hadron Collider, JHEP 06 (2020) 044,

P. Alba, et al., Influence of hadronic resonances on the chemical freeze-out in heavy-ion collisions, Phys. Rev. C 101 (2020) 054905,

A. Bazavov, et al., Additional Strange Hadrons from QCD Thermodynamics and Strangeness Freezeout in Heavy Ion Collisions, Phys. Rev. Lett. 113 (2014) 072001,

C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001,

O. Garcia-Montero, et al., Role of proton-antiproton regeneration in the late stages of heavy-ion collisions, Phys. Rev. C 105 (2022) 064906,

A. V. Sarantsev, et al., Hyperon II: Properties of excited hyperons, Eur. Phys. J. A 55 (2019) 180,

B. C. Hunt and D. M. Manley, Updated determination of N ∗ resonance parameters using a unitary, multichannel formalism, Phys. Rev. C 99 (2019) 055205,

F. Afzal, et al., Observation of the pη ′ Cusp in the New Precise Beam Asymmetry Σ Data for γp → pη, Phys. Rev. Lett. 125 (2020) 152002, https://doi/10.1103/PhysRevLett.125.152002

S. Ryu, J. Staudenmaier, and H. Elfner, Bulk Observables within a Hybrid Approach for Heavy Ion Collisions with SMASH Afterburner, MDPI Proc. 10 (2019) 44,

D. Oliinychenko, et al., Microscopic study of deuteron production in PbPb collisions at √ s = 2.76T eV via hydrodynamics and a hadronic afterburner, Phys. Rev. C 99 (2019) 044907,

D. Everett et al., Multisystem Bayesian constraints on the transport coefficients of QCD matter, Phys. Rev. C 103 (2021) 054904,

X.-Y. Wu, et al., (3+1)-D viscous hydrodynamics at finite net baryon density: Identified particle spectra, anisotropic flows, and flow fluctuations across energies relevant to the beam-energy scan at RHIC, Phys. Rev. C 105 (2022) 034909,

P. Parotto, et al., QCD equation of state matched to lattice data and exhibiting a critical point singularity, Phys. Rev. C 101 (2020) 034901,

J. Noronha-Hostler, et al., Lattice-based equation of state at finite baryon number, electric charge and strangeness chemical potentials, Phys. Rev. C 100 (2019) 064910,

V. Vovchenko and H. Stoecker, Thermal-FIST: A package for heavy-ion collisions and hadronic equation of state, Comput. Phys. Commun. 244 (2019) 295,

T. Sjöstrand, S. Mrenna, and P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852,




How to Cite

Salinas San Martín J, Noronha-Hostler J, Elfner H, Hammelmann J, Hirayama R. Influence of heavy resonances in SMASH. Supl. Rev. Mex. Fis. [Internet]. 2022 Dec. 10 [cited 2024 Jul. 18];3(4):040921 1-7. Available from: