Geometrical causality: casting Feynman integrals into quantum algorithms

Authors

  • German Fabricio Roberto Sborlini Deutsches Elektronen-Synchrotron DESY

DOI:

https://doi.org/10.31349/SuplRevMexFis.4.021103

Keywords:

Quantum field theories, Hamiltonian, loop-tree duality

Abstract

The calculation of higher-order corrections in Quantum Field Theories is a challenging task. In particular, dealing with multiloop and multileg Feynman amplitudes leads to severe bottlenecks and a very fast scaling of the computational resources required to perform the calculation. With the purpose of overcoming these limitations, we discuss efficient strategies based on the Loop-Tree Duality, its manifestly causal representation and the underlying geometrical interpretation. In concrete, we exploit the geometrical causal selection rules to define a Hamiltonian whose ground-state is directly related to the terms contributing to the causal representation. In this way, the problem can be translated into a minimization one and implemented in a quantum computer to search for a potential speed-up.

References

G. Heinrich, Collider Physics at the Precision Frontier, Phys. Rept. 922 (2021) 1, https://dx.doi.org/10.1016/j.physrep.2021.03.006

S. Catani, T. Gleisberg, F. Krauss, G. Rodrigo and J.-C. Winter, From loops to trees by-passing Feynman’s theorem, JHEP 09 (2008) 065, https://dx.doi.org/10.1088/1126-6708/2008/09/065

I. Bierenbaum, S. Catani, P. Draggiotis and G. Rodrigo, A Tree-Loop Duality Relation at Two Loops and Beyond, JHEP 10 (2010) 073, https://dx.doi.org/10.1007/JHEP10(2010)073

I. Bierenbaum, S. Buchta, P. Draggiotis, I. Malamos and G. Rodrigo, Tree-Loop Duality Relation beyond simple poles, JHEP 03 (2013) 025, https://dx.doi.org/10.1007/JHEP03(2013)025

S. Buchta, G. Chachamis, P. Draggiotis, I. Malamos and G. Rodrigo, On the singular behaviour of scattering amplitudes in quantum field theory, JHEP 11 (2014) 014, https://dx.doi.org/10.1007/JHEP11(2014)014

E. Tomboulis, Causality and Unitarity via the Tree-Loop Duality Relation, JHEP 05 (2017) 148, https://dx.doi.org/10.1007/JHEP05(2017)148

S. Buchta, Theoretical foundations and applications of the Loop-Tree Duality in Quantum Field Theories. PhD thesis, Valencia U., 2015. https://arxiv.org/abs/1509.071671509.07167

J. de Jesús Aguilera-Verdugo et al., A Stroll through the LoopTree Duality, Symmetry 13 (2021) 1029, https://dx.doi.org/10.3390/sym13061029

F. Driencourt-Mangin, G. Rodrigo and G. F. Sborlini, Universal dual amplitudes and asymptotic expansions for gg → H and H → γγ in four dimensions, Eur. Phys. J. C 78 (2018) 231, https://dx.doi.org/10.1140/epjc/s10052-018-5692-5

J. Plenter, Asymptotic Expansions Through the Loop-Tree Duality, Acta Phys. Polon. B 50 (2019) 1983, https://dx.doi.org/10.5506/APhysPolB.50.1983

J. Plenter and G. Rodrigo, Asymptotic expansions through the loop-tree duality, Eur. Phys. J. C 81 (2021) 320, https://dx.doi.org/10.1140/epjc/s10052-021-09094-9

J. Plenter, Asymptotic expansions and causal representations through the loop-tree duality. PhD thesis, Valencia U., IFIC, 2022

F. Driencourt-Mangin, G. Rodrigo, G. F. R. Sborlini and W. J. Torres Bobadilla, Universal four-dimensional representation of H → γγ at two loops through the Loop-Tree Duality, JHEP 02 (2019) 143, https://dx.doi.org/10.1007/JHEP02(2019)143

F. Driencourt-Mangin, G. Rodrigo, G. F. R. Sborlini and W. J. Torres Bobadilla, Interplay between the loop-tree duality and helicity amplitudes, Phys. Rev. D 105 (2022) 016012, https://dx.doi.org/10.1103/PhysRevD.105.016012

R. J. Hernandez-Pinto, G. F. R. Sborlini and G. Rodrigo, Towards gauge theories in four dimensions, JHEP 02 (2016) 044, https://dx.doi.org/10.1007/JHEP02(2016)044

G. F. R. Sborlini, F. Driencourt-Mangin, R. Hernandez-Pinto and G. Rodrigo, Four-dimensional unsubtraction from the looptree duality, JHEP 08 (2016) 160, https://dx.doi.org/10.1007/JHEP08(2016)160

G. F. R. Sborlini, F. Driencourt-Mangin and G. Rodrigo, Four-dimensional unsubtraction with massive particles, JHEP 10 (2016) 162, https://dx.doi.org/10.1007/JHEP10(2016)162

R. M. Prisco and F. Tramontano, Dual subtractions, JHEP 06 (2021) 089, https://dx.doi.org/10.1007/JHEP06(2021)089

J. J. Aguilera-Verdugo et al., Causality, unitarity thresholds, anomalous thresholds and infrared singularities from the looptree duality at higher orders, JHEP 12 (2019) 163, https://dx.doi.org/10.1007/JHEP12(2019)163

J. J. Aguilera-Verdugo et al., Open loop amplitudes and causality to all orders and powers from the loop-tree duality, Phys. Rev. Lett. 124 (2020) 211602, https://dx.doi.org/10.1103/PhysRevLett.124.211602

J. J. Aguilera-Verdugo, R. J. Hernandez-Pinto, G. Rodrigo, G. F. R. Sborlini and W. J. Torres Bobadilla, Causal representation of multi-loop Feynman integrands within the loop-tree duality, JHEP 01 (2021) 069, https://dx.doi.org/10.1007/JHEP01(2021)069

J. Aguilera-Verdugo, R. J. Hernández-Pinto, G. Rodrigo, G. F. R. Sborlini and W. J. Torres Bobadilla, Mathematical properties of nested residues and their application to multiloop scattering amplitudes, JHEP 02 (2021) 112, https://dx.doi.org/10.1007/JHEP02(2021)112

S. Ramírez-Uribe, R. J. Hernández-Pinto, G. Rodrigo, G. F. R. Sborlini and W. J. Torres Bobadilla, Universal opening of four-loop scattering amplitudes to trees, JHEP 04 (2021) 129, https://dx.doi.org/10.1007/JHEP04(2021)129

S. Ramírez-Uribe, R. J. Hernández-Pinto, G. Rodrigo and G. F. R. Sborlini, From Five-Loop Scattering Amplitudes to Open Trees with the Loop-Tree Duality, Symmetry 14 (2022) 2571, https://dx.doi.org/10.3390/sym14122571

R. Runkel, Z. Ször, J. P. Vesga and S. Weinzierl, Causality and loop-tree duality at higher loops, Phys. Rev. Lett. 122 (2019) 111603, https://dx.doi.org/10.1103/PhysRevLett.122.111603

R. Runkel, Z. Ször, J. P. Vesga and S. Weinzierl, Integrands of loop amplitudes within loop-tree duality, Phys. Rev. D 101 (2020) 116014, https://dx.doi.org/10.1103/PhysRevD.101.116014

Z. Capatti, V. Hirschi, D. Kermanschah, A. Pelloni and B. Ruijl, Numerical Loop-Tree Duality: contour deformation and subtraction, JHEP 04 (2020) 096, https://dx.doi.org/10.1007/JHEP04(2020)096

Z. Capatti, V. Hirschi, D. Kermanschah and B. Ruijl, Loop-Tree Duality for Multiloop Numerical Integration, Phys. Rev. Lett. 123 (2019) 151602, https://dx.doi.org/10.1103/PhysRevLett.123.151602

W. J. Torres Bobadilla, Loop-tree duality from vertices and edges, JHEP 04 (2021) 183, https://dx.doi.org/10.1007/JHEP04(2021)183

W. J. T. Bobadilla, Lotty The loop-tree duality automation, Eur. Phys. J. C 81 (2021) 514, http://dx.doi.org/10.1140/epjc/s10052-021-09235-0

G. F. R. Sborlini, Geometrical approach to causality in multiloop amplitudes, Phys. Rev. D 104 (2021) 036014, https://dx.doi.org/10.1103/PhysRevD.104.036014

Z. Capatti, Exposing the threshold structure of loop integrals, Phys. Rev. D 107 (2023) L051902, https://dx.doi.org/10.1103/PhysRevD.107.L051902

S. Ramírez-Uribe, A. E. Rentería-Olivo, G. Rodrigo, G. F. R. Sborlini and L. Vale Silva, Quantum algorithm for Feynman loop integrals, JHEP 05 (2022) 100, https://dx.doi.org/10.1007/JHEP05(2022)100

G. Clemente et al., Variational quantum eigensolver for causal loop Feynman diagrams and acyclic directed graphs, https://arxiv.org/abs/2210.132402210.13240

R. E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys. 1 (1960) 429. https://dx.doi.org/10.1063/1.1703676

G. Rodrigo et al., in preparation.

G. F. R. Sborlini, Geometry and causality for efficient multiloop representations, in 15th International Symposium on Radiative Corrections: Applications of Quantum Field Theory to Phenomenology and LoopFest XIX: Workshop on Radiative Corrections for the LHC and Future Colliders, September 2021. http://arxiv.org/abs/2109.078082109.07808

A. Y. Wei, P. Naik, A. W. Harrow and J. Thaler, Quantum Algorithms for Jet Clustering, Phys. Rev. D 101 (2020) 094015, https://dx.doi.org/10.1103/PhysRevD.101.094015

D. Pires, P. Bargassa, J. Seixas and Y. Omar, A Digital Quantum Algorithm for Jet Clustering in High-Energy Physics, https://arxiv.org/abs/2101.05618

D. Pires, Y. Omar and J. Seixas, Adiabatic Quantum Algorithm for Multijet Clustering in High Energy Physics, https://arxiv.org/abs/2012.14514

J. J. M. de Lejarza, L. Cieri and G. Rodrigo, Quantum clustering and jet reconstruction at the LHC, Phys. Rev. D 106 (2022) 036021, https://dx.doi.org/10.1103/PhysRevD.106.036021

A. Delgado and J. Thaler, Quantum Annealing for Jet Clustering with Thrust, https://arxiv.org/abs/2205.02814

J. Barata, X. Du, M. Li, W. Qian and C. A. Salgado, Medium induced jet broadening in a quantum computer, https://arxiv.org/abs/2208.06750

J. Barata and C. A. Salgado, A quantum strategy to compute the jet quenching parameter qˆ, Eur. Phys. J. C 81 (2021) 862, https://dx.doi.org/10.1140/epjc/s10052-021-09674-9

A. Pérez-Salinas, J. Cruz-Martínez, A. A. Alhajri and S. Carrazza, Determining the proton content with a quantum computer, Phys. Rev. D 103 (2021) 034027, https://dx.doi.org/10.1103/PhysRevD.103.034027

V. S. Ngairangbam, M. Spannowsky and M. Takeuchi, Anomaly detection in high-energy physics using a quantum autoencoder, Phys. Rev. D 105 (2022) 095004, https://dx.doi.org/10.1103/PhysRevD.105.095004

G. Agliardi, M. Grossi, M. Pellen and E. Prati, Quantum integration of elementary particle processes, Phys. Lett. B 832 (2022) 137228, https://dx.doi.org/10.1016/j.physletb.2022.137228

J. J. M. de Lejarza, M. Grossi, L. Cieri and G. Rodrigo, Quantum Fourier Iterative Amplitude Estimation, https://arxiv.org/abs/2305.01686

H. A. Chawdhry and M. Pellen, Quantum simulation of colour in perturbative quantum chromodynamics, https://arxiv.org/abs/2303.04818

L. K. Grover, Quantum computers can search rapidly by using almost any transformation, Phys. Rev. Lett. 80 (1998) 4329, http://dx.doi.org/10.1103/PhysRevLett.80.4329

L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79 (1997) 325, http://dx.doi.org/10.1103/PhysRevLett.79.325

J. Tilly et al., The Variational Quantum Eigensolver: A review of methods and best practices, Phys. Rept. 986 (2022) 1, http://dx.doi.org/10.1016/j.physrep.2022.08.003

Downloads

Published

2023-09-18

How to Cite

1.
Sborlini GFR. Geometrical causality: casting Feynman integrals into quantum algorithms. Supl. Rev. Mex. Fis. [Internet]. 2023 Sep. 18 [cited 2024 Oct. 30];4(2):021103 1-7. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/7105