Speed of sound of a non-equilibrium medium formed at LHC energies





Speed of sound; sound velocity; quark-gluon plasma; heavy ions; percolation


We estimate the squared speed of sound for the hot and dense QCD states formed in ion collisions at very high energies by exploring the implications of small-bounded and geometry effects in the String Percolation Model. The squared sound velocity shows signals of a local minimum (knee point) below the critical temperature consistent with the softest point in the equation of state and the onset of quark deconfinement that characterizes the quark-gluon plasma phase transition.


H. Song, et al., 200 A GeV Au+Au collisions serve a nearly perfect quark-gluon liquid, Phys. Rev. Lett. 106 (2011) 192301, https://doi.org/10.1103/PhysRevLett.106.192301

H. Song, S. A. Bass, and U. Heinz, Viscous QCD matter in a hybrid hydrodynamic+Boltzmann approach, Phys. Rev. C 83 (2011) 024912, https://doi.org/10.1103/PhysRevC.83.024912

P. Deb, G. P. Kadam, and H. Mishra, Estimating transport coefficients in hot and dense quark matter, Phys. Rev. D 94 (2016) 094002, https://doi.org/10.1103/PhysRevD.94.094002

M. Albright and J. I. Kapusta, Quasiparticle Theory of Transport Coefficients for Hadronic Matter at Finite Temperature and Baryon Density, Phys. Rev. C 93 (2016) 014903, https://doi.org/10.1103/PhysRevC.93.014903

Y. Aoki, et al., The Order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature 443 (2006) 675, https://doi.org/10.1038/nature05120

A. Bazavov et al., Equation of state in ( 2+1 )-flavor QCD, Phys. Rev. D 90 (2014) 094503, https://doi.org/10.1103/PhysRevD.90.094503

S. Borsányi, et al., Full result for the QCD equation of state with 2+1 flavors, Phys. Lett. B 730 (2014) 99, https://doi.org/10.1016/j.physletb.2014.01.007

S. Borsanyi, et al., QCD Crossover at Finite Chemical Potential from Lattice Simulations, Phys. Rev. Lett. 125 (2020) 052001, https://doi.org/10.1103/PhysRevLett.125.052001

O. Philipsen, The QCD equation of state from the lattice, Prog. Part. Nucl. Phys. 70 (2013) 55, https://doi.org/10.1016/j.ppnp.2012.09.003

M. Motta, et al., Isentropic evolution of the matter in heavy-ion collisions and the search for the critical endpoint, Eur. Phys. J. C 80 (2020) 770, https://doi.org/10.1140/epjc/s10052-020-8218-x

W.-b. He, et al., Speed of sound in QCD matter, Phys. Rev. D 105 (2022) 094024, https://doi.org/10.1103/PhysRevD.105.094024

B.-J. Schaefer, M. Wagner, and J. Wambach, Thermodynamics of (2+1)-flavor QCD: Confronting Models with Lattice Studies, Phys. Rev. D 81 (2010) 074013, https://doi.org/10.1103/PhysRevD.81.074013

A. Abhishek, H. Mishra, and S. Ghosh, Transport coefficients in the Polyakov quark meson coupling model: A relaxation time approximation, Phys. Rev. D 97 (2018) 014005, https://doi.org/10.1103/PhysRevD.97.014005

R. Venugopalan and M. Prakash, Thermal properties of interacting hadrons, Nucl. Phys. A 546 (1992) 718, https://doi.org/10.1016/0375-9474(92)90005-5

M. Bluhm, et al., Lattice QCD-based equations of state at vanishing net-baryon density, Nucl. Phys. A 929 (2014) 157, https://doi.org/10.1016/j.nuclphysa.2014.06.013

Z. V. Khaidukov, M. S. Lukashov, and Y. A. Simonov, Speed of sound in the QGP and an SU(3) Yang-Mills theory, Phys. Rev. D 98 (2018) 074031, https://doi.org/10.1103/PhysRevD.98.074031

Z. V. Khaidukov and Y. A. Simonov, Thermodynamics of a quark-gluon plasma at finite baryon density, Phys. Rev. D 100 (2019) 076009, https://doi.org/10.1103/PhysRevD.100.076009

V. Mykhaylova and C. Sasaki, Impact of quark quasiparticles on transport coefficients in hot QCD, Phys. Rev. D 103 (2021) 014007, https://doi.org/10.1103/PhysRevD.103.014007

D. ter Haar, ed., Collected Papers of L.D. Landau (Pergamon, 1965), https://doi.org/10.1016/c2013-0-01806-3

C.-Y. Wong, Landau Hydrodynamics Revisited, Phys. Rev. C 78 (2008) 054902, https://link.aps.org/doi/10.1103/PhysRevC.78.054902

Z. Jian, et al., Unified Descriptions of Hwa-Bjorken and Landau Relativistic Hydrodynamics and the Pseudorapidity Distributions in High Energy Heavy Ion Collisions, Nucl. Phys. Rev. 32 (2015) 398, https://www.npr.ac.cn/en/article/doi/10.11804/NuclPhysRev.32.04.398

A. M. Kamchatnov, Landau-Khalatnikov Problem in Relativistic Fluid Dynamics, J. Exp. Theor. Phys. 129 (2019) 607, https://doi.org/10.1134/S1063776119100200

B. Andersson, et al., Parton Fragmentation and String Dynamics, Phys. Rept. 97 (1983) 31, https://doi.org/10.1016/0370-1573(83)90080-7

N. S. Amelin, M. A. Braun, and C. Pajares, Multiple production in the Monte Carlo string fusion model, Phys. Lett. B 306 (1993) 312, https://doi.org/10.1016/0370-2693(93)90085-V

M. A. Braun, et al., De-Confinement and Clustering of Color Sources in Nuclear Collisions, Phys. Rept. 599 (2015) 1, https://doi.org/10.1016/j.physrep.2015.09.003

M. A. Braun and C. Pajares, Implications of percolation of color strings on multiplicities, correlations and the transverse momentum, Eur. Phys. J. C 16 (2000) 349, https://doi.org/10.1007/s100520050027

I. Bautista, C. Pajares, and J. E. Ram´ırez, String percolation in AA and p+p collisions, Rev. Mex. Fis. 65 (2019) 197, https://doi.org/10.31349/RevMexFis.65.197

I. Bautista, A. F. Tellez, and P. Ghosh, Indication of ´ change of phase in high-multiplicity proton-proton events at LHC in String Percolation Model, Phys. Rev. D 92 (2015) 071504, https://doi.org/10.1103/PhysRevD.92.071504

J. E. Ramírez, A. Fernández Téllez, and I. Bautista, String percolation threshold for elliptically bounded systems, Physica A 488 (2017) 8, https://doi.org/10.1016/j.physa.2017.07.002

J. E. Ramírez and C. Pajares, Area covered by disks in smallbounded continuum percolating systems: An application to the string percolation model, Phys. Rev. E 100 (2019) 022123, https://doi.org/10.1103/PhysRevE.100.022123

I. Bautista, J. D. de Deus, and C. Pajares, Elliptic flow at RHIC and LHC in the string percolation approach, Eur. Phys. J. C 72 (2012) 2038, https://doi.org/10.1140/epjc/s10052-012-2038-6

I. Bautista, et al., Rapidity dependence of particle densities in pp and AA collisions, Phys. Rev. C 86 (2012) 034909, https://doi.org/10.1103/PhysRevC.86.034909

I. Bautista, J. Dias de Deus, and C. Pajares, String percolation and the first LHC data, Acta Phys. Polon. Supp. 6 (2013) 165, https://doi.org/10.5506/APhysPolBSupp.6.165

C. Andrés, M. Braun, and C. Pajares, Energy loss as the origin of a universal scaling law of the elliptic flow, Eur. Phys. J. A 53 (2017) 41, https://doi.org/10.1140/epja/i2017-12226-5

B. K. Srivastava, Percolation and Deconfinement, Nucl. Phys. A 862-863 (2011) 132, https://doi.org/10.1016/j.nuclphysa.2011.05.031

R. P. Scharenberg, B. K. Srivastava, and A. S. Hirsch, Percolation of Color Sources and the determination of the Equation of State of the Quark-Gluon Plasma (QGP) produced in central Au-Au collisions at √ SNN = 200-GeV, Eur. Phys. J. C 71 (2011) 1510, https://doi.org/10.1140/epjc/s10052-010-1510-4

J. E. Ramírez, B. Díaz, and C. Pajares, Interacting color strings as the origin of the liquid behavior of the quark-gluon plasma, Phys. Rev. D 103 (2021) 094029, https://doi.org/10.1103/PhysRevD.103.094029

A. Bialas, Fluctuations of string tension and transverse mass distribution, Phys. Lett. B 466 (1999) 301, https://doi.org/10.1016/S0370-2693(99)01159-4

S. Mertens and C. Moore, Continuum percolation thresholds in two dimensions, Phys. Rev. E 86 (2012) 061109, https://doi.org/10.1103/PhysRevE.86.061109

A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition, Phys. Rev. D 85 (2012) 054503, https://doi.org/10.1103/PhysRevD.85.054503

J. D. Bjorken, Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region, Phys. Rev. D 27 (1983) 140, https://doi.org/10.1103/PhysRevD.27.140

J. Dias de Deus, et al., Clustering of color sources and the shear viscosity of the QGP in heavy ion collisions at RHIC and LHC energies, Eur. Phys. J. C 72 (2012) 2123, https://doi.org/10.1140/epjc/s10052-012-2123-x

P. Sahoo, et al., Thermodynamic and transport properties in Au + Au collisions at RHIC energies from the clustering of color strings, Mod. Phys. Lett. A 34 (2019) 1950034, https://doi.org/10.1142/S0217732319500342

A. D. Gasbarro, Studies of Conformal Behavior in Strongly Interacting Quantum Field Theories, Ph.D. thesis, Yale U. (2019)

K. I. Ishikawa, et al., Conformal Behavior in QCD (2013)

M. Cheng et al., Equation of State for physical quark masses, Phys. Rev. D 81 (2010) 054504, https://doi.org/10.1103/PhysRevD.81.054504

B. K. Srivastava, Percolation Approach to Initial Stage Effects in High Energy Collisions, Nucl. Phys. A 926 (2014) 142, https://doi.org/10.1016/j.nuclphysa.2014.04.029

J. Dias de Deus et al., Transport Coefficient to Trace Anomaly in the Clustering of Color Sources Approach, Phys. Rev. C 93 (2016) 024915, https://doi.org/10.1103/PhysRevC93.024915

A. Bazavov et al., Equation of state and QCD transition at finite temperature, Phys. Rev. D 80 (2009) 014504, https://doi.org/10.1103/PhysRevD.80.014504




How to Cite

Alvarado García JR, Bautista I, Fernández Téllez A. Speed of sound of a non-equilibrium medium formed at LHC energies. Supl. Rev. Mex. Fis. [Internet]. 2023 Sep. 18 [cited 2023 Dec. 10];4(2):021112 1-5. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/7112