Minimal center-of-mass energy required for QGP formation in pp and AA collisions
DOI:
https://doi.org/10.31349/SuplRevMexFis.4.021125Keywords:
High energy physics, percolation, center-of-mass energyAbstract
We discuss the conditions for QGP formation under the Color String Percolation Model. Since the observables in the percolation theory are sensitive to the system size, we expect the finite size effects take a relevant contribution to the estimation of the color string observables, such as the transition temperature or the center of mass energy needed for the QGP formation.
We observe that pp collisions (small systems) require around 20 times bigger center of mass energy than heavy ion collisions. Our results are consistent with the experiments claiming that the QGP has been observed.
References
M. Gyulassy and L. McLerran, New forms of QCD matter discovered at RHIC, Nucl. Phys. A 750 (2005) 30, https://doi.org/10.1016/j.nuclphysa.2004.10.034
STAR Collaboration, Experimental and theoretical challenges in the search for the quark-gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102, https://doi.org/10.1016/j.nuclphysa.2005.03.085
PHENIX Collaboration, Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX Collaboration, Nucl. Phys. A 757 (2005) 184, https://doi.org/10.1016/j.nuclphysa.2005.03.086
K. Aamodt et al., Elliptic Flow of Charged Particles in Pb-Pb Collisions at √ sNN = 2.76 TeV, Phys. Rev. Lett. 105 (2010) 252302, https://doi.org/10.1103/PhysRevLett.105.252302
G. Aad et al., Measurement of the pseudorapidity and transverse momentum dependence of the elliptic flow of charged particles in lead-lead collisions at sNN = 2.76 TeV with the ATLAS detector, Phys. Lett. B 707 (2012) 330, https://doi.org/10.1016/j.physletb.2011.12.056
S. Chatrchyan et al., Centrality dependence of dihadron correlations and azimuthal anisotropy harmonics in PbPb collisions at √ sNN = 2.76 TeV, Eur. Phys. J. C 72 (2012) 10052, https://doi.org/10.1140/epjc/s10052-012-2012-3
M. Braun et al., De-confinement and clustering of color sources in nuclear collisions, Phys. Rep. 599 (2015) 1, https:// doi.org/10.1016/j.physrep.2015.09.003
I. Bautista, C. Pajares, and J. E. Ramírez, String percolation in AA and p+ p collisions, Rev. Mex. Fis. 65 (2019) 197, https://doi.org/10.31349/RevMexFis.65.197
M. A. Braun and C. Pajares, Implications of color-string percolation on multiplicities, correlations, and the transverse momentum, Eur. Phys. J. C 16 (2000) 349, https://doi.org/10.1007/s100520050027
N. Armesto et al., Percolation Approach to Quark-Gluon Plasma and J/ψ Suppression, Phys. Rev. Lett. 77 (1996) 3736, https://doi.org/10.1103/PhysRevLett.77.3736
C. Pajares, String and parton percolation, Eur. Phys. J. C 43 (2005) 9, https://doi.org/10.1140/epjc/s2005-02179-y 12
M. A. Braun and C. Pajares, Transverse momentum distributions and their forward-backward correlations in the percolating color string approach, Phys. Rev. Lett. 85 (2000) 4864, https://doi.org/10.1103/PhysRevLett.85.4864
M. Braun et al., Cumulative particle production and percolation of strings, The European Physical Journal C-Particles and Fields 25 (2002) 249 https://doi.org/10.1007/s10052-002-0989-8
J. D. De Deus and C. Pajares, Percolation of color sources and critical temperature, Phys. Lett. B 642 (2006) 455, https://doi.org/10.1016/j.physletb.2006.10.018
I. Bautista, C. Pajares, and J. E. Ram´ırez, String percolation in AA and p+p collisions, Rev. Mex. Fis. 65 (2019) 197
M. A. Braun, F. Del Moral, and C. Pajares, Percolation of strings and the relativistic energy data on multiplicity and transverse momentum distributions, Phys. Rev. C 65 (2002) 024907. https://doi.org/10.1103/PhysRevC.65.024907
M. Braun et al., De-confinement and clustering of color sources in nuclear collisions, Physics Reports 599 (2015) 1, https://doi.org/10.1016/j.physrep.2015.09.003
J. E. Ramírez, B. Díaz, and C. Pajares, Interacting color strings as the origin of the liquid behavior of the quark-gluon plasma, Phys. Rev. D 103 (2021) 094029, https://doi.org/10.1103/PhysRevD.103.094029
M. A. Braun and C. Pajares, Transverse momentum distributions and their forward-backward correlations in the percolating color string approach, Phys. Rev. Lett. 85 (2000) 4864, https://doi.org/10.1103/PhysRevLett.85.4864
J. E. Ramírez, A. F. Tellez, and I. Bautista, String percolation threshold for elliptically bounded systems, Phys. A: Stat. Mech. Appl. 488 (2017) 8, https://doi.org/10.1016/j.physa.2017.07.002
M. Nardi and H. Satz, String clustering and J/ψ suppression in nuclear collisions, Phys. Lett. B 442 (1998) 14, https://doi.org/10.1016/S0370-2693(98)01234-9
M. N. Chernodub, Kertesz Line and Embedded Monopoles in ´ QCD, Phys. Rev. Lett. 95 (2005) 252002, https://doi.org/10.1103/PhysRevLett.95.252002
S. Mertens and C. Moore, Continuum percolation thresholds in two dimensions, Phys. Rev. E 86 (2012) 061109, https://doi.org/10.1103/PhysRevE.86.061109
D. Stauffer and A. Aharony, Introduction To Percolation Theory (Taylor & Francis, 1994), https://doi.org/10.1201/9781315274386
I. Bautista et al., Multiplicity in pp and AA collisions: the same power law from energy-momentum constraints in string production, Phys. Lett. B 715 (2012) 230, https://doi.org/10.1016/j.physletb.2012.07.029
J. C. Texca García et al., Percolation leads to finite-size effects on the transition temperature and center-of-mass energy required for quark-gluon plasma formation, Phys. Rev. D 106 (2022) L031503, https://doi.org/10.1103/PhysRevD.106.L031503
A. N. Mishra et al., SISSA: ALICE data in the framework of the Color String Percolation Model, PoS LHCP2019 (2019) 004, https://doi.org/10.22323/1.350.0004
T. Biro, H. B. Nielsen, and J. Knoll, Colour rope model for extreme relativistic heavy ion collisions, Nucl. Phys. B 245 (1984) 449, https://doi.org/10.1016/0550-3213(84)90441-3
M. E. Newman and R. M. Ziff, Fast Monte Carlo algorithm for site or bond percolation, Phys. Rev. E 64 (2001) 016706, https://doi.org/10.1103/PhysRevE.64.016706
J. E. Ramírez and C. Pajares, Area covered by disks in smallbounded continuum percolating systems: An application to the string percolation model, Phys. Rev. E 100 (2019) 022123, https://doi.org/10.1103/PhysRevE.100.022123
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Diana Rosales Herrera, Arturo Fernández Téllez, Jhony Ramírez
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Suplemento de la Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.