Dark matter from an effective couplings approach

Authors

DOI:

https://doi.org/10.31349/SuplRevMexFis.4.021129

Keywords:

Dark Matter, Relic Density, Beyond Standard Model

Abstract

In this work we briefly review dark matter evidence, in the Weakly Interacting Massive Particles (WIMP) paradigm we study the cases of scalar and fermion dark matter candidates. Our study introduces effective couplings between dark matter and Standard Model matter, it is intended as an exercise for academic purposes setting up the required tools for a further analysis. Under the last assumption, we calculate the relic density in order to constrain the model parameter space.

References

V. C. Rubin, J. Ford, W. K., and N. Thonnard, Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc). Astrophysical Journal 238 (1980) 471, https://doi.org/10.1086/158003

S. Profumo, Introduction to particle dark matter, an (World Scientific Europe, Londres, Inglaterra, 2017). https://doi.org/10.1142/q0001

A. M. Green, Dark matter in astrophysics/cosmology (2021), https://arxiv.org/abs/2109.05854

P. Collaboration et al., Planck 2018 results. VI. Cosmological parameters (2018), https://arxiv.org/abs/1807.06209

G. Bertone Particle dark matter: observations, models and searches (Cambridge University Press, 2010). https://doi.org/10.1017/CB09780511770739

C. Espinoza et al., The S3 Symmetric Model with a Dark Scalar, Phys. Lett. B 788 (2019) 185, https://doi.org/10.1016/j.physletb.2018.11.028

M. A. Arroyo-Urena˜ et al., Dark matter in Inert Doublet Model with one scalar singlet and U(1)X gauge symmetry, Eur. Phys. J. C 80 (2020) 788, https://doi.org/10.1140/epjc/s10052-020-8316-9

R. Gaitan et al., Dark Matter candidate in Inert Doublet Model with additional local gauge symmetry U(1), J. Phys. Conf. Ser. 761 (2016) 012015, https://doi.org/10.1088/1742-6596/761/1/012015

R. Gaitan, E. A. Garces, and J. H. M. de Oca, Singlet scalar Dark Matter in Dark Two Higgs Doublet Model (2014), https://doi.org/10.48550/arXiv.1410.5462

M. Taoso, G. Bertone, and A. Masiero, Dark Matter candidates: A ten-point test (2007), https://arxiv.org/abs/0711.4996

D. Majumdar, Dark Matter: An Introduction (CRC Press, Boca Raton, FL, Estados Unidos de America, 2014)

J. McDonald, Gauge singlet scalars as cold dark matter, Physical Rev. D 50 (1994) 3637, https://doi.org/10.1103/physrevd.50.3637

R. L. Workman et al., Review of Particle Physics, PTEP 2022 (2022) 083C01, https://doi.org/10.1093/ptep/ptac097

LanHep, (2020). https://theory.sinp.msu.ru/∼semenov/lanhep.html

micrOMEGAs-Relic, (2020). https://lapth.cnrs.fr/micromegas/

M. A. Arroyo-Ureña et al., Dark matter and neutrinos in Left- Right Mirror Model with Z2 symmetry, Rev. Mex. Fis. Suppl. 3 (2022) 020725 1, https://doi.org/10.31349/SuplRevMexFis.3.020725

Downloads

Published

2023-11-09

How to Cite

1.
Chávez Ménez IE, Montes de Oca Yemha JH, Garcés García EA, Gaitán Lozano R. Dark matter from an effective couplings approach. Supl. Rev. Mex. Fis. [Internet]. 2023 Nov. 9 [cited 2024 May 2];4(2):021129 1-5. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/7115