Electromagnetic corrections in hadronic tau decays

Authors

  • Jesús Alejandro Miranda Hernández Cinvestav

DOI:

https://doi.org/10.31349/SuplRevMexFis.4.021115

Keywords:

Radiative corrections, Effective field theory, Semileptonic decays

Abstract

We revisit the isospin-breaking and electromagnetic corrections of some hadronic tau decays, which can also be employed to extract the Cabibbo-Kobayashi-Maskawa (CKM) matrix element Vus. We extend former analyses by Antonelli et al. working with ChPT with resonances. We find that going beyond the Low approximation, these corrections play an important role between the πK0 and Kπ0 modes. The KK0 channel is also discussed.

References

M. Davier, A. Hocker, and Z. Zhang, The Physics of Hadronic Tau Decays, Rev. Mod. Phys. 78 (2006) 1043, https://doi.org/10.1103/RevModPhys.78.1043

A. Pich, Precision Tau Physics, Prog. Part. Nucl. Phys. 75 (2014) 41, https://doi.org/10.1016/j.ppnp.2013.11.002

G. Abbiendi et al., A Study of one prong tau decays with a charged kaon, Eur. Phys. J. C 19 (2001) 653, https://doi.org/10.1007/s100520100632

S. Schael et al., Branching ratios and spectral functions of tau decays: Final ALEPH measurements and physics implications, Phys. Rept. 421 (2005) 191, https://doi.org/10.1016/j.physrep.2005.06.007

B. Aubert et al., Measurements of Charged Current Lepton Universality and using Tau Lepton Decays to Phys. Rev. Lett. 105 (2010) 051602, https://doi.org/10.1103/PhysRevLett.105.051602

K. Ackerstaff et al., Measurement of the strong coupling constant αs and the vector and axial vector spectral functions in hadronic tau decays, Eur. Phys. J. C 7 (1999) 571, https://doi.org/10.1007/s100529901061

S. Anderson et al., Hadronic structure in the decay, Phys. Rev. D 61 (2000) 112002, https://doi.org/10.1103/PhysRevD.61.112002

M. Fujikawa et al., High-Statistics Study of the Decay, Phys. Rev. D 78 (2008) 072006, https://doi.org/10.1103/PhysRevD.78.072006

J. P. Lees et al., Measurement of the spectral function for the decay, Phys. Rev. D 98 (2018) 032010, https://doi.org/10.1103/PhysRevD.98.032010

Y. Jin et al., Observation of and search for Phys. Rev. D 100 (2019) 071101, https://doi.org/10.1103/PhysRevD.100.071101

E. A. Garces, et al., Effective-field theory analysis of the decays, JHEP 12 (2017) 027, https://doi.org/10.1007/JHEP12(2017)027

V. Cirigliano, A. Crivellin, and M. Hoferichter, No-go theorem for nonstandard explanations of the CP asymmetry, Phys. Rev. Lett. 120 (2018) 141803, https://doi.org/10.1103/PhysRevLett.120.141803

J. A. Miranda and P. Roig, Effective-field theory analysis of decays, JHEP 11 (2018) 038, https://doi.org/10.1007/JHEP11(2018)038

V. Cirigliano, et al., Hadronic τ Decays as New Physics Probes in the LHC Era, Phys. Rev. Lett. 122 (2019) 221801, https://doi.org/10.1103/PhysRevLett.122.221801

J. Rendon, P. Roig, and G. Toledo Sanchez, Effective field theory analysis of the decays, Phys. Rev. D 99 (2019) 093005, https://doi.org/10.1103/PhysRevD.99.093005

F.-Z. Chen, et al., CP asymmetry in decays within the Standard Model and beyond, Phys. Rev. D 100 (2019) 113006, https://doi.org/10.1103/PhysRevD.100.113006

S. Gonzalez-Solıs, et al., Effective-field theory analysis of the decays, Phys. Rev. D 101 (2020) 034010, https://doi.org/10.1103/PhysRevD.101.034010

S. Gonzalez-Solıs, et al., Exclusive hadronic tau decays as probes of non-SM interactions, Phys. Lett. B 804 (2020) 135371, https://doi.org/10.1016/j.physletb.2020.135371

F.-Z. Chen, X.-Q. Li, and Y.-D. Yang, CP asymmetry in the angular distribution of decays, JHEP 05 (2020) 151, https://doi.org/10.1007/JHEP05(2020)151

M. A. Arroyo-Ureña, et al., One-loop determination of branching ratios and new physics tests, JHEP 02 (2022) 173, https://doi.org/10.1007/JHEP02(2022)173

M. A. Arroyo-Ureña, et al., Radiative corrections to A reliable new physics test, Phys. Rev. D 104 (2021) L091502, https://doi.org/10.1103/PhysRevD.104.L091502

F.-Z. Chen, et al., CP asymmetry in the angular distributions of decays. Part II. General effective field theory analysis, JHEP 01 (2022) 108, https://doi.org/10.1007/JHEP01(2022)108

V. Cirigliano, et al., Semileptonic tau decays beyond the Standard Model, JHEP 04 (2022) 152, https://doi.org/10.1007/JHEP04(2022)152

Z.-H. Guo and P. Roig, One meson radiative tau decays, Phys. Rev. D 82 (2010) 113016, https://doi.org/10.1103/PhysRevD.82.113016

A. Guevara, G. Lopez Castro, and P. Roig, Weak radiative pion vertex in decays, Phys. Rev. D 88 (2013) 033007, https://doi.org/10.1103/PhysRevD.88.033007

A. Guevara, G. L. Castro, and P. Roig, Improved description of dilepton production in decays, Phys. Rev. D 105 (2022) 076007, https://doi.org/10.1103/PhysRevD.105.076007

Y. Aoki et al., FLAG Review 2021, Eur. Phys. J. C 82 (2022) 869, https://doi.org/10.1140/epjc/s10052-022-10536-1

V. Cirigliano, G. Ecker, and H. Neufeld, Isospin violation and the magnetic moment of the muon, Phys. Lett. B 513 (2001) 361, https://doi.org/10.1016/S0370-2693(01)00764-X

V. Cirigliano, G. Ecker, and H. Neufeld, Radiative tau decay and the magnetic moment of the muon, JHEP 08 (2002) 002, https://doi.org/10.1088/1126-6708/2002/08/002

A. Flores-Tlalpa, et al., Model-dependent radiative corrections to τ toπ − π0 revisited, Nucl. Phys. B Proc. Suppl. 169 (2007) 250, https://doi.org/10.1016/j.nuclphysbps.2007.03.011

J. A. Miranda and P. Roig, New based evaluation of the hadronic contribution to the vacuum polarization piece of the muon anomalous magnetic moment, Phys. Rev. D 102 (2020) 114017, https://doi.org/10.1103/PhysRevD.102.114017

F. Flores-Baez, et al., Long-distance radiative corrections to the di-pion tau lepton decay, Phys. Rev. D 74 (2006) 071301, https://doi.org/10.1103/PhysRevD.74.071301

M. Antonelli, et al., Predicting the τ strange branching ratios and implications for Vus, JHEP 10 (2013) 070, https://doi.org/10.1007/JHEP10(2013)070

F. V. Flores-Baez and J. R. Morones-Ibarra, Model Independent Electromagnetic corrections in hadronic decays, Phys. Rev. D 88 (2013) 073009, https://doi.org/10.1103/PhysRevD.88.073009

F. E. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions, Phys. Rev. 110 (1958) 974, https://doi.org/10.1103/PhysRev.110.974

T. H. Burnett and N. M. Kroll, Extension of the low soft photon theorem, Phys. Rev. Lett. 20 (1968) 86, https://doi.org/10.1103/PhysRevLett.20.86

A. Guevara, G. Lopez-Castro, and P. Roig, decays as backgrounds in the search for second class currents, Phys. Rev. D 95 (2017) 054015, https://doi.org/10.1103/PhysRevD.95.054015

G. Ecker, et al., The Role of Resonances in Chiral Perturbation Theory, Nucl. Phys. B 321 (1989) 311, https://doi.org/10.1016/0550-3213(89)90346-5

G. Ecker, et al., Chiral Lagrangians for Massive Spin 1 Fields, Phys. Lett. B 223 (1989) 425, https://doi.org/10.1016/0370-2693(89)91627-4

J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971) 95, https://doi.org/10.1016/0370-2693(71)90582-X

. E. Witten, Global Aspects of Current Algebra, Nucl. Phys. B 223 (1983) 422, https://doi.org/10.1016/0550-3213(83)90063-9

R. Escribano, A. Miranda, and P. Roig, Radiative corrections to the decays (2023)

V. Cirigliano, et al., The hV APi Green function in the resonance region, Phys. Lett. B 596 (2004) 96, https://doi.org/10.1016/j.physletb.2004.06.082

V. Cirigliano, et al., Towards a consistent estimate of the chiral low-energy constants, Nucl. Phys. B 753 (2006) 139, https://doi.org/10.1016/j.nuclphysb.2006.07.010

K. Kampf and J. Novotny, Resonance saturation in the oddintrinsic parity sector of low-energy QCD, Phys. Rev. D 84 (2011) 014036, https://doi.org/10.1103/PhysRevD.84.014036

P. Roig and J. J. Sanz Cillero, Consistent high-energy constraints in the anomalous QCD sector, Phys. Lett. B 733 (2014) 158, https://doi.org/10.1016/j.physletb.2014.04.034

A. Sirlin, Radiative corrections toGV /GˆI 1 4 in simple extensions of the SU(2) x U(1) gauge model, Nucl. Phys. B 71 (1974) 29, https://doi.org/10.1016/0550-3213(74)90254-5

A. Sirlin, Current Algebra Formulation of Radiative Corrections in Gauge Theories and the Universality of the Weak Interactions, Rev. Mod. Phys. 50 (1978) 573, https://doi.org/10.1103/RevModPhys.50.573

A. Sirlin, Large mW, mZ Behavior of the O(α) Corrections to Semileptonic Processes Mediated by W, Nucl. Phys. B 196 (1982) 83, https://doi.org/10.1016/0550-3213(82)90303-0

W. J. Marciano and A. Sirlin, Radiative Corrections to beta Decay and the Possibility of a Fourth Generation, Phys. Rev. Lett. 56 (1986) 22, https://doi.org/10.1103/PhysRevLett.56.22

W. J. Marciano and A. Sirlin, Electroweak Radiative Corrections to tau Decay, Phys. Rev. Lett. 61 (1988) 1815, https://doi.org/10.1103/PhysRevLett.61.1815

W. J. Marciano and A. Sirlin, Radiative corrections to π`2 decays, Phys. Rev. Lett. 71 (1993) 3629, https://doi.org/10.1103/PhysRevLett.71.3629

E. Braaten and C.-S. Li, Electroweak radiative corrections to the semihadronic decay rate of the tau lepton, Phys. Rev. D 42 (1990) 3888, https://doi.org/10.1103/PhysRevD.42.3888

J. Erler, Electroweak radiative corrections to semileptonic tau decays, Rev. Mex. Fis. 50 (2004) 200

J. J. Sakurai, Theory of strong interactions, Annals Phys. 11 (1960) 1, https://doi.org/10.1016/0003-4916(60)90126-3

Downloads

Published

2023-09-18

How to Cite

1.
Miranda Hernández JA. Electromagnetic corrections in hadronic tau decays. Supl. Rev. Mex. Fis. [Internet]. 2023 Sep. 18 [cited 2025 Jan. 15];4(2):021115 1-7. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/7116