Study of cLFV with ℓiℓjγγ effective vertex

Authors

  • Fabiola Fortuna CINVESTAV

DOI:

https://doi.org/10.31349/SuplRevMexFis.4.021111

Keywords:

effective theory, charged lepton flavor violation

Abstract

In this work we analyze cLFV processes using a low-energy EFT that induces the effective interaction between two charged leptons of different flavor and two photons. We compute ℓi → ℓjγ, ℓi → ℓjγγ decays and ℓi → ℓj conversion in nuclei. We derived indirect upper limits on the double photon decays, which turned out to be below current experimental bounds. Our prediction for ℓ → τ conversion in nuclei is below the expected sensitivity of the NA64 experiment

References

F. Fortuna et al., Indirect upper limits on ℓi → ℓjγγ from ℓi → ℓjγ, Phys. Rev. D 107 (2023) 015027, https://doi.org/10.1103/PhysRevD.107.015027

J. D. Bowman et al., New Upper Limit for µ → eγγ, Phys. Rev. Lett. 41 (1978) 442, https://doi.org/10.1103/PhysRevLett.41.442

S. Davidson et al., Probing µeγγ contact interactions with µ → e conversion, Phys. Rev. D 102 (2020) 115043, https://doi.org/10.1103/PhysRevD.102.115043

A. Gemintern et al., Lepton flavor violating decays L → ℓγγ as a new probe of supersymmetry with broken R parity, Phys. Rev. D 67 (2003) 115012, https://link.aps.org/doi/10.1103/PhysRevD.67.115012

A. Cordero-Cid, G. Tavares-Velasco, and J. J. Toscano, Implications of a very light pseudoscalar boson on lepton flavor violation, Phys. Rev. D 72 (2005) 117701, https://doi.org/10.1103/PhysRevD.72.117701

J. I. Aranda et al., Higgs mediated lepton flavor violating tau decays τ → µ gamma and τ → µγγ in effective theories, Phys. Rev. D 78 (2008) 017302, https://link.aps.org/doi/10.1103/PhysRevD.78.017302

J. I. Aranda et al., Effective Lagrangian description of Higgs mediated flavor violating electromagnetic transitions: Implications on lepton flavor violation, Phys. Rev. D 79 (2009) 093009, https://doi.org/10.1103/PhysRevD.79.093009

D. A. Bryman, S. Ito, and R. Shrock, Upper limits on branching ratios of the lepton-flavor-violating decays τ → ℓγγ and τ → ℓX, Phys. Rev. D 104 (2021) 075032, https://doi.org/10.1103/PhysRevD.104.075032

A. M. Baldini et al., Search for the lepton flavour violating decay µ + → e +γ with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434, https://doi.org/10.1140/epjc/s10052-016-4271-x

D. Grosnick et al., Search for the Rare Decay µ + → e +γγ, Phys. Rev. Lett. 57 (1986) 3241, https://doi.org/10.1103/PhysRevLett.57.3241

B. Aubert et al., Searches for Lepton Flavor Violation in the Decays τ + → e +− gamma and τ + → mu+− gamma, Phys. Rev. Lett. 104 (2010) 021802, https://link.aps.org/doi/10.1103/PhysRevLett.104.021802

A. Abdesselam et al., Search for lepton-flavor-violating taulepton decays to ℓγ at Belle, JHEP 10 (2021) 19, https://doi.org/10.1007/JHEP10(2021)019

I. Angelozzi, In pursuit of lepton flavour violation: A search for the τ → µγγ decay with ATLAS at √ s = 8 TeV, Ph.D. thesis, U. Amsterdam, IHEF (2017)

W. Bertl et al., A Search for muon to electron conversion in muonic gold, Eur. Phys. J. C 47 (2006) 337, https://doi.org/10.1140/epjc/s2006-02582-x

S. Gninenko et al., Deep inelastic e−τ and µ−τ conversion in the NA64 experiment at the CERN SPS, Phys. Rev. D 98 (2018) 015007, https://doi.org/10.1103/PhysRevD.98.015007

S. Banerjee et al., Snowmass 2021 White Paper: Charged lepton flavor violation in the tau sector (2022), https://doi.org/10.48550/arXiv.2203.14919

R. D. Bolton et al., Search for Rare Muon Decays with the Crystal Box Detector, Phys. Rev. D 38 (1988) 2077, https://doi.org/10.1103/PhysRevD.38.2077

V. N. Gribov and L. N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438

Y. L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e+ e- Annihilation by Perturbation Theory in Quantum Chromodynamics., Sov. Phys. JETP 46 (1977) 641

G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298, https://doi.org/10.1016/0550-3213(77)90384-4

K. Kovarik et al., nCTEQ15 - Global analysis of nuclear parton distributions with uncertainties in the CTEQ framework, Phys. Rev. D 93 (2016) 085037, https://link.aps.org/doi/10.1103/PhysRevD.93.085037

D. B. Clark, E. Godat, and F. I. Olness, ManeParse: A Mathematica reader for Parton Distribution Functions, Comput. Phys. Commun. 216 (2017) 126, https://doi.org/10.1016/j.cpc.2017.03.004

F. Fortuna, et al., Lepton Flavor Violation from diphoton effective interactions (2023), https://arxiv.org/abs/2305.04974

T. Husek, K. Monsalvez-Pozo, and J. Portoles, Lepton-flavour violation in hadronic tau decays and µ − τ conversion in nuclei, JHEP 01 (2021) 059, https://doi.org/10.1007/JHEP01(2021)059

R. Kitano, M. Koike, and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev. D 66 (2002) 096002, https://link.aps.org/doi/10.1103/PhysRevD.66.096002

T. Suzuki, D. F. Measday, and J. P. Roalsvig, Total Nuclear Capture Rates for Negative Muons, Phys. Rev. C 35 (1987) 2212, https://doi.org/10.1103/PhysRevC.35.2212

L. Bartoszek et al., Mu2e Technical Design Report (2014), https://doi.org/10.2172/1172555

R. Abramishvili et al., COMET Phase-I Technical Design Report, PTEP 2020 (2020) 033C01, https://doi.org/10.1093/ptep/ptz125

P. W. Cattaneo and A. Schoning, MEG II and Mu3e status ¨ and plan, EPJ Web Conf. 212 (2019) 01004, https://doi.org/10.1051/epjconf/201921201004

Y. Kuno et al., An Experimental Search for a µ − − e − Conversion at Sensitivity of the Order of 10−18 with a Highly Intense Muon Source: PRISM (2006), https://j-parc.jp/researcher/Hadron/en/pac 0606/pdf/p20-Kuno.pdf

M. Moritsu, Search for Muon-to-Electron Conversion with the COMET Experiment, Universe 8 (2022) 196, https://doi.org/10.3390/universe8040196

A. Deshpande, Physics of an Electron Ion Collider, Nucl. Phys. A 904-905 (2013) 302c, https://doi.org/10.1016/j.nuclphysa.2013.01.076

J.-P. Delahaye et al., Enabling Intensity and Energy Frontier Science with a Muon Accelerator Facility in the U.S.: A White Paper Submitted to the 2013 U.S. Community Summer Study of the Division of Particles and Fields of the American Physical Society, In Snowmass 2013: Snowmass on the Mississippi (2013), https://doi.org/10.48550/arXiv.1308.0494

Y. C. Acar et al., Future circular collider based lepton-hadron and photon-hadron colliders: Luminosity and physics, Nucl. Instrum. Meth. A 871 (2017) 47, https://doi.org/10.1016/j.nima.2017.07.041

H. Baer, et al., The International Linear Collider Technical Design Report - Volume 2: Physics (2013), https://doi.org/10.48550/arXiv.1306.6352

M. Sher and I. Turan, µ+N → τ+N at a muon or neutrino factory, Phys. Rev. D 69 (2004) 017302, https://doi.org/10.1103/PhysRevD.69.017302

S. Kanemura et al., A Study of lepton flavor violating µN(eN) → τX reactions in supersymmetric models, Phys. Lett. B 607 (2005) 165, https://doi.org/10.1016/j.physletb.2004.12.038

A. Abada, et al., In-flight cLFV conversion: e − µ , e − τ and µ − τ in minimal extensions of the standard model with sterile fermions, Eur. Phys. J. C 77 (2017) 304, https://doi.org/10.1140/epjc/s10052-017-4864-z

M. Takeuchi, Y. Uesaka, and M. Yamanaka, Higgs mediated CLFV processes µN(eN) → τX via gluon operators, Phys. Lett. B 772 (2017) 279, https://doi.org/10.1016/j.physletb.2017.06.054

E. Ramirez and P. Roig, Lepton flavor violation within the simplest little Higgs model, Phys. Rev. D 106 (2022) 056018, https://link.aps.org/doi/10.1103/PhysRevD.106.056018

B. Grzadkowski, et al., Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085, https://doi.org/10.1007/JHEP10(2010)085

W. Buchmuller and D.Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621, https://doi.org/10.1016/0550-3213(86)90262-2

S. N. Gninenko et al., Probing lepton flavor violation in muonneutrino +N → τ+ scattering and µ → τ conversion on nucleons, Mod. Phys. Lett. A 17 (2002) 1407, https://doi.org/10.1142/S0217732302007855

Downloads

Published

2023-09-18

How to Cite

1.
Fortuna F. Study of cLFV with ℓiℓjγγ effective vertex. Supl. Rev. Mex. Fis. [Internet]. 2023 Sep. 18 [cited 2025 Jan. 15];4(2):021111 1-9. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/7124