Precision studies for the partonic kinematics calculation through Machine Learning

Authors

  • David Francisco Rentería Estrada Universidad Autónoma de Sinaloa https://orcid.org/0000-0002-2825-9837
  • Roger J. Hernandez-Pinto Universidad Autónoma de Sinaloa
  • German F. R. Sborlini Universidad de Salamanca
  • Pia Zurita Universidad Complutense de Madrid

DOI:

https://doi.org/10.31349/SuplRevMexFis.4.021134

Keywords:

High energy; proton-proton; quantum electrodynamics

Abstract

High Energy collider experiments are moving to the highest precision frontier quickly. The predictions of observables are based on the factorization formula which helps to connect small to large distances. These predictions can be contrasted with experimental measurements and the success of this phenomenological approach is based on the correct description of nature. The application of the method to proton-proton colliders brings new challenges due to the proton structure and the detectors efficiency on reconstructing hadrons. Furthermore, since the non-perturbative distribution functions takes an important role to describe the experimental distributions, the presence of them makes the information of the partons diluted. At Leading Order (LO) in perturbative calculations, the momentum fractions involved in hard scattering processes are known exactly in terms of kinematical variables of initial and final states hadrons. However, at Next-to-Leading Order (NLO) and beyond, a closed analytical formula is not available. Furthermore, from the pure theoretical calculation, the exact definition of the momentum fraction is very challenging. In this work, we report a methodology based on Machine Learning techniques for the extraction of momentum fractions for $p+p\to\pi^++\gamma$ using a Monte Carlo simulation including quantum corrections up to Next-to-Leading Order in Quantum Chromodynamics and Leading Order in Quantum Electrodymics. Our findings point towards a methodology to find the fundamental properties of the internal structure of hadrons because the reconstructed momentum fractions deeply relate our perturbative models with experimental measurements.

References

K. Cranmer, et al., Reframing Jet Physics with New Computational Methods, EPJ Web Conf. 251 (2021) 03059, https://doi.org/10.1051/epjconf/202125103059

M. Diefenthaler et al., Deeply learning deep inelastic scattering kinematics, Eur. Phys. J. C 82 (2022) 1064, https://doi.org/10.1140/epjc/s10052-022-10964-z

M. Arratia et al., Reconstructing the kinematics of deep inelastic scattering with deep learning, Nucl. Instrum. Meth. A 1025 (2022) 166164, https://doi.org/10.1016/j.nima.2021.166164

R. D. Ball et al., A determination of parton distributions with faithful uncertainty estimation, Nucl. Phys. B 809 (2009) 1, https://doi.org/10.1016/j.nuclphysb.2008.09.037

R. D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244, https://doi.org/10.1016/j.nuclphysb.2012.10.003

T. N. Collaboration et al., Neural network determination of parton distributions: the nonsinglet case, JHEP 2007 (2007) 039, https://dx.doi.org/10.1088/1126-6708/2007/03/039

S. Forte et al., Neural network parametrization of deep-inelastic structure functions, JHEP 2002 (2002) 062, https://dx.doi.org/10.1088/1126-6708/2002/05/062

R. D. Ball et al., Parton distributions for the LHC run II, JHEP 2015 (2015) 40, https://doi.org/10.1007/JHEP04(2015)040

R. Abdul Khalek et al., A first determination of parton distributions with theoretical uncertainties, Eur. Phys. J. C 79 (2019) 838, https://doi.org/10.1140/epjc/s10052-019-7364-5

R. D. Ball et al., The path to proton structure at 1% accuracy, Eur. Phys. J. C 82 (2022) 428, https://doi.org/10.1140/epjc/s10052-022-10328-7

J. Rojo and J. I. Latorre, Neural network parametrization of spectral functions from hadronic tau decays and determination of QCD vacuum condensates, JHEP 2004 (2004) 055, https://dx.doi.org/10.1088/1126-6708/2004/01/055

D. de Florian and G. F. R. Sborlini, Hadron plus photon production in polarized hadronic collisions at next-to-leading order accuracy, Phys. Rev. D 83 (2011) 074022, https://doi.org/10.1103/PhysRevD.83.074022

D. F. Renter´ıa Estrada et al., Reconstructing partonic kinematics at colliders with machine learning, SciPost Phys. Core 5 (2022) 049, https://doi.org/10.21468/SciPostPhysCore.5.4.049

J. C. Collins, D. E. Soper, and G. Sterman, Factorization of Hard Processes in QCD, Adv. Ser. Direct. High Energy Phys. 5 (1989) 1, https://doi.org/10.1142/97898145032660001

S. Frixione, Isolated photons in perturbative QCD, Phys. Lett. B 429 (1998) 369, https://doi.org/10.1016/S0370-2693(98)00454-7

D. F. Rentería-Estrada, R. J. Hernández-Pinto, and G. Sborlini, Analysis of the Internal Structure of Hadrons Using Direct Photon Production, Symmetry 13 (2021) 942, https://doi.org/10.3390/sym13060942

P. Kontaxakis, The Level-1 CMS electron and photon trigger for the LHC Run II, PoS LHCP 2018 (2018) 073, https://doi.org/10.22323/1.321.0073

G. Aad et al., Performance of electron and photon triggers in ATLAS during LHC Run 2, Eur. Phys. J. C 80 (2020) 47, https://doi.org/10.1140/epjc/s10052-019-7500-2

G. Aad et al., Electron and photon performance measurements with the ATLAS detector using the 2015-2017 LHC protonproton collision data, JINST 14 (2019) P12006, https://dx.doi.org/10.1088/1748-0221/14/12/P12006

J. M. Campbell et al., Direct photon production and PDF fits reloaded, Eur. Phys. J. C 78 (2018) 470, https://doi.org/10.1140/epjc/s10052-018-5944-4

V. Berton et al., Illuminating the photon content of the proton within a global PDF analysis, SciPost Phys. 5 (2018) 008, https://doi.org/10.21468/SciPostPhys.5.1.008

A. Manohar et al., How Bright is the Proton? A Precise Determination of the Photon Parton Distribution Function, Phys. Rev. Lett. 117 (2016) 242002, https://doi.org/10.1103/PhysRevLett.117.242002

A. V. Manohar et al., The photon content of the proton, JHEP 2017 (2017) 46, https://doi.org/10.1007/JHEP12(2017)046

D. de Florian et al., Parton-to-pion fragmentation reloaded, Phys. Rev. D 91 (2015) 014035, https://doi.org/10. 1103/PhysRevD.91.014035

D. de Florian, R. Sassot, and M. Stratmann, Global analysis of fragmentation functions for protons and charged hadrons, Phys. Rev. D 76 (2007) 074033, https://doi.org/10.1103/PhysRevD.76.074033

F. Pedregosa et al., Scikit-learn: Machine Learning in Python, J. Machine Learning Res. 12 (2011) 2825-2830

S. A. Ochoa-Oregon et al., Constraining fragmentation functions through hadronphoton production at higher-orders, Phys. Rev. D 107 (2023) 096002, https://doi.org/10.1103/PhysRevD.107.096002

Downloads

Published

2024-01-26

How to Cite

1.
Rentería Estrada DF, Hernandez-Pinto RJ, Sborlini GFR, Zurita P. Precision studies for the partonic kinematics calculation through Machine Learning. Supl. Rev. Mex. Fis. [Internet]. 2024 Jan. 26 [cited 2024 Mar. 2];4(2):021134 1-6. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/7126