Constraining BSM discrete flavor symmetries with heavy scalar searches at colliders

Authors

  • Antonio Enrique Cárcamo Hernández Universidad Técnica Federico Santa María and Centro Científico-Tecnológico de Valparaíso
  • María Catalina Espinoza Hernández Instituto de Física, UNAM
  • Juan Carlos Gómez-Izquierdo Centro de Estudios Científicos y Tecnológicos No. 16, IPN
  • Juan Marchant González Universidad Técnica Federico Santa María and Centro Científico-Tecnológico de Valparaíso
  • Myriam Mondragón Instituto de Física, UNAM

DOI:

https://doi.org/10.31349/SuplRevMexFis.4.021126

Keywords:

Multi-Higgs Phenomenology, Discrete Symmetries, Dark Matter

Abstract

Discrete Flavor Symmetries are often employed in BSM constructions to successfully recreate fermion masses and mixing patterns through several known mechanisms. Obvious constraints on these types of scenarios are the non-observation of Flavour Changing Neutral Currents which set stringent limits. In this talk I will discuss the strategy of using the scalar sector phenomenology predicted by such BSM models, and its correlation with the dark matter sector, to further strengthen the constraints by exploiting the large data available from heavy scalar searches in colliders including recent likelihood profiles provided by ATLAS and CMS.

References

A.E. C. Hernández et al., Fermion masses and mixings, dark matter, leptogenesis and g - 2 muon anomaly in an extended 2HDM with inverse seesaw, Eur. Phys. J. Plus 137 (2022) 1224, https://doi.org/10.1140/epjp/s13360-022-03432-w

A. E. Carcamo Hernández et al., Predictive extended 3HDM with S4 family symmetry (2022), https://doi.org/10.48550/arXiv.2212.12000

W. G. Hollik, G. Weiglein, and J. Wittbrodt, Impact of Vacuum Stability Constraints on the Phenomenology of Supersymmetric Models, JHEP 2019 (2019) 109, https://doi.org/10.1007/JHEP03(2019)109

P. M. Ferreira et al., Vacuum Instabilities in the N2HDM, JHEP 2019 (2019) 6, https://doi.org/10.1007/JHEP09(2019)006

M. Maniatis and D. Mehta, Minimizing Higgs Potentials via Numerical Polynomial Homotopy Continuation, Eur. Phys. J. Plus 127 (2012) 91, https://doi.org/10.1140/epjp/i2012-12091-1

S. Coleman, The Fate of the False Vacuum. 1. Semiclassical Theory, Phys. Rev. D 15 (1977) 2929, https://doi.org/10.1103/PhysRevD.15.2929

C. G. Callan, and S. Coleman, The Fate of the False Vacuum. II. First Quantum Corrections, Phys. Rev. D 16 (1977) 1762, https://doi.org/10.1103/PhysRevD.16.1762

C.-A. Deledalle et al., Closed-form expressions of the eigen decomposition of 2 x 2 and 3 x 3 Hermitian matrices, Research report, Universite de Lyon (2017), https://hal.Archives-ouvertes.fr/hal-01501221

F. Staub, SARAH 4: A tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773, https://doi.org/10.1016/j.cpc.2014.02.018

F. Staub, From Superpotential to Model Files for FeynArts and CalcHep/CompHep, Comput. Phys. Commun. 181 (2010) 1077, https://doi.org/10.1016/j.cpc.2010.01.011

F. Staub, Automatic Calculation of supersymmetric Renormalization Group Equations and Self Energies, Comput. Phys. Commun. 182 (2011) 808, https://doi.org/10.1016/j.cpc.2010.11.030

F. Staub, SARAH 3.2: Dirac Gauginos, UFO output, and more, Comput. Phys. Commun. 184 (2013) 1792, https://doi.org/10.1016/j.cpc.2013.02.019

F. Staub, Exploring new models in all detail with SARAH, Adv. High Energy Phys. 2015 (2015) 840780, https://doi.org/10.1155/2015/840780

W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e+ e- colliders, Comput. Phys. Commun. 153 (2003) 275, https://doi.org/10.1016/S0010-4655(03)00222-4

W. Porod and F. Staub, SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458, https://doi.org/10.1016/j.cpc.2012.05.021

P. Bechtle et al., HiggsBounds-5: Testing Higgs Sectors in the LHC 13 TeV Era, Eur. Phys. J. C 80 (2020) 1211, https://doi.org/10.1140/epjc/s10052-020-08557-9

G. Aad et al., Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using pp collisions at √ s = 13 TeV, Phys. Rev. Lett. 125 (2020) 051801, https://doi.org/10.1103/PhysRevLett.125.051801

R. V. Harlander, S. Liebler, and H. Mantler, SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM, Comput. Phys. Commun. 184 (2013) 1605, https://doi.org/10.1016/j.cpc.2013.02.006

R. V. Harlander, S. Liebler, and H. Mantler, SusHi Bento: Beyond NNLO and the heavy-top limit, Comput. Phys. Commun. 212 (2017) 239, https://doi.org/10.1016/j.cpc.2016.10.015

P. Bechtle et al., HiggsSignals-2: Probing new physics with precision Higgs measurements in the LHC 13 TeV era, Eur. Phys. J. C 81 (2021) 145, https://doi.org/10.1140/epjc/s10052-021-08942-y

P. Bechtle et al., Applying Exclusion Likelihoods from LHC Searches to Extended Higgs Sectors, Eur. Phys. J. C 75 (2015) 421, https://doi.org/10.1140/epjc/s10052-015-3650-z. 22

G. D. Martinez et al., Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module, Eur. Phys. J. C 77 (2017) 761, https://doi.org/10.1140/epjc/s10052-017-5274-y

P. Scott, Pippi - painless parsing, post-processing and plotting of posterior and likelihood samples, Eur. Phys. J. Plus 127 (2012) 138, https://doi.org/10.1140/epjp/i2012-12138-3

N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6, https://doi.org/10.1051/0004-6361/201833910

G. Bélanger et al., micrOMEGAs 3: A program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960, https://doi.org/10.1016/j.cpc.2013.10.016

G. Bélanger et al., micrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun. 192 (2015) 322, https://doi.org/10.1016/j.cpc.2015.03.003

D. Barducci et al., Collider limits on new physics within micrOMEGAs 4.3, Comput. Phys. Commun. 222 (2018) 327, https://doi.org/10.1016/j.cpc.2017.08.028

G. Bélanger et al., micrOMEGAs5.0: Freeze-in, Comput. Phys. Commun. 231 (2018) 173, https://doi.org/10.1016/j.cpc.2018.04.027

E. Aprile et al., Dark Matter Search Results from a One TonYear Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302, https://doi.org/10.1103/PhysRevLett.121.111302

T. Bringmann et al., DarkBit: A GAMBIT module for computing dark matter observables and likelihoods, Eur. Phys. J. C 77 (2017) 831, https://doi.org/10.1140/epjc/s10052-017-5155-4

P. Athron et al., Global analyses of Higgs portal singlet dark matter models using GAMBIT, Eur. Phys. J. C 79 (2019) 38, https://doi.org/10.1140/epjc/s10052-018-6513-6

M. Schumann et al., Dark matter sensitivity of multi-ton liquid xenon detectors, JCAP 10 (2015) 016, https://doi.org/10.1088/1475-7516/2015/10/016

J. Billard, E. Figueroa-Feliciano, and L. Strigari, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 (2014) 023524, https://doi.org/10.1103/PhysRevD.89.023524

Downloads

Published

2023-11-06

How to Cite

1.
Cárcamo Hernández AE, Espinoza Hernández MC, Gómez-Izquierdo JC, Marchant González J, Mondragón M. Constraining BSM discrete flavor symmetries with heavy scalar searches at colliders. Supl. Rev. Mex. Fis. [Internet]. 2023 Nov. 6 [cited 2024 Oct. 30];4(2):021126 1-8. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/7127