DM-SM interactions mediated by spin-one particles: EFT study

Authors

  • Fabiola Fortuna CINVESTAV

DOI:

https://doi.org/10.31349/SuplRevMexFis.4.021117

Keywords:

dark matter, effective field theory

Abstract

Standard model-dark matter particles, mediated by spin one fields, are analyzed within the effective field theory framework. We [1, 2] consider dark particles masses from few MeV to 6.4 TeV. We restrict the EFT using bounds from relic density, Z invisible decay width, direct and indirect detection limits and collider constraints. Solutions below mZ are found for two operators. Others, around the electroweak scale or slightly above, are also compatible with all present limits.

References

F. Fortuna, P. Roig, and J. Wudka, Effective field theory analysis of dark matter-standard model interactions with spin one mediators, JHEP 2021 (2021) 223, https://doi.org/10.1007/JHEP02(2021)223

F. Fortuna and P. Roig, Impact of ATLAS constraints on effective dark matter-standard model interactions with spin-one mediators, Phys. Rev. D 107 (2023) 075003, https://doi.org/10.1103/PhysRevD.107.075003

G. Arcadi et al., The waning of the WIMP? A review of models, searches, and constraints, Eur. Phys. J. C 78 (2018) 203, https://doi.org/10.1140/epjc/s10052-018-5662-y

L. Roszkowski, E. M. Sessolo, and S. Trojanowski, WIMP dark matter candidates and searches-current status and future prospects, Rept. Prog. Phys. 81 (2018) 066201, https://doi.org/10.1088/1361-6633/aab913

G. Belanger et al., Dark matter direct detection rate in a generic model with micrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747, https://doi.org/10.1016/j.cpc.2008.11.019

A. Crivellin and U. Haisch, Dark matter direct detection constraints from gauge bosons loops, Phys. Rev. D 90 (2014) 115011, https://doi.org/10.1103/PhysRevD.90.115011

B. Barman et al., Effective Leptophilic WIMPs at the e +e − collider, JHEP 2022 (2022) 146, https://doi.org/10.1007/JHEP04(2022)146

A. Crivellin, F. D’Eramo, and M. Procura, New Constraints on Dark Matter Effective Theories from Standard Model Loops, Phys. Rev. Lett. 112 (2014) 191304, https://doi.org/10.1103/PhysRevLett.112.191304

M. Duch, B. Grzadkowski, and J. Wudka, Classification of effective operators for interactions between the Standard Model and dark matter, JHEP 2015 (2015) 116, https://doi.org/10.1007/JHEP05(2015)116

J. Goodman et al., Constraints on Dark Matter from Colliders, Phys. Rev. D 82 (2010) 116010, https://doi.org/10.1103/PhysRevD.82.116010

S. Bhattacharya and J. Wudka, Effective theories with dark matter applications, Int. J. Mod. Phys. D 30 (2021) 2130004, https://doi.org/10.1142/S0218271821300044

V. Gonzalez Macıas and J. Wudka, Effective theories for Dark Matter interactions and the neutrino portal paradigm, JHEP 2015 (2015) 161, https://doi.org/10.1007/JHEP07(2015)161

G. Bertone, D. Hooper, and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279, https://doi.org/10.1016/j.physrep.2004.08.031

J. L. Feng, Dark Matter Candidates from Particle Physics and Methods of Detection, Ann. Rev. Astron. Astrophys. 48 (2010) 495, https://doi.org/10.1146/annurev-astro-082708-101659

D. Racco, A. Wulzer, and F. Zwirner, Robust collider limits on heavy-mediator Dark Matter, JHEP 05 (2015) 009, https://doi.org/10.1007/JHEP05(2015)009

N. F. Bell, et al., Dark matter at the LHC: Effective field theories and gauge invariance, Phys. Rev. D 92 (2015) 053008, https://doi.org/10.1103/PhysRevD.92.053008

A. De Simone and T. Jacques, Simplified models vs. effective field theory approaches in dark matter searches, Eur. Phys. J. C 76 (2016) 367, https://doi.org/10.1140/epjc/s10052-016-4208-4

Q.-H. Cao, et al., Effective Dark Matter Model: Relic density, CDMS II, Fermi LAT and LHC, JHEP 08 (2011) 018, https://doi.org/10.1007/JHEP08(2011)018

K. Cheung, et al., Global Constraints on Effective Dark Matter Interactions: Relic Density, Direct Detection, Indirect Detection, and Collider, JCAP 1205 (2012) 001, https://doi.org/10.1088/1475-7516/2012/05/001

G. Busoni et al., On the Validity of the Effective Field Theory for Dark Matter Searches at the LHC, Phys. Lett. B 728 (2014) 412, https://doi.org/10.1016/j.physletb.2013.11.069

O. Buchmueller et al., Characterising dark matter searches at colliders and direct detection experiments: Vector mediators, JHEP 01 (2015) 037, https://doi.org/10.1007/JHEP01(2015)037

B. Patt and F. Wilczek, Higgs-field portal into hidden sectors (2006), https://arxiv.org/abs/hep-ph/0605188. 23. V. Gonzalez-Macıas, J. I. Illana, and J. Wudka, A realistic model for Dark Matter interactions in the neutrino portal paradigm, JHEP 2016 (2016) 171, https://doi.org/10.1007/JHEP05(2016)171

J. M. Lamprea et al., Self-interacting neutrino portal dark matter, Phys. Rev. D 103 (2021) 015017, https://doi.org/10.1103/PhysRevD.103.015017

G. Belanger et al., micrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun. 192 (2015) 322, https://doi.org/10.1016/j.cpc.2015.03.003

P. Zyla et al., Review of Particle Physics, PTEP 2020 (2020) 083C01, https://doi.org/10.1093/ptep/ ptaa104

P. Janot and S. Jadach, Improved Bhabha cross section at LEP and the number of light neutrino species, Phys. Lett. B 803 (2020) 135319, https://doi.org/10.1016/j.physletb.2020.135319

M. Tanabashi et al., Review of Particle Physics, Phys. Rev. D 98 (2018) 030001, https://doi.org/10.1103/PhysRevD.98.030001

J. Aalbers et al., First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment (2022), https://arxiv.org/abs/2207.03764

A. H. Abdelhameed et al., First results from the CRESSTIII low-mass dark matter program, Phys. Rev. D 100 (2019) 102002, https://doi.org/10.1103/PhysRevD.100.102002

P. Agnes et al., Low-Mass Dark Matter Search with the DarkSide-50 Experiment, Phys. Rev. Lett. 121 (2018) 081307, https://doi.org/10.1103/PhysRevLett.121.081307

E. Aprile et al., Dark Matter Search Results from a One TonYear Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302, https://doi.org/10.1103/PhysRevLett.121.111302

Y. Meng et al., Dark Matter Search Results from the PandaX- 4T Commissioning Run, Phys. Rev. Lett. 127 (2021) 261802, https://doi.org/10.1103/PhysRevLett.127.261802

A. Ibarra, A. S. Lamperstorfer, and J. Silk, Dark matter annihilations and decays after the AMS-02 positron measurements, Phys. Rev. D 89 (2014) 063539, https://doi.org/10.1103/PhysRevD.89.063539

G. Aad et al., Search for new phenomena in events with an energetic jet and missing transverse momentum in pp collisions at √ s = 13 TeV with the ATLAS detector, Phys. Rev. D 103 (2021) 112006, https://doi.org/10.1103/PhysRevD.103.112006

A. Semenov, LanHEP - A package for automatic generation of Feynman rules from the Lagrangian. Version 3.2, Comput. Phys. Commun. 201 (2016) 167, https://doi.org/10.1016/j.cpc.2016.01.003

J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 2014 (2014) 079, https://doi.org/10.1007/JHEP07(2014)079

C. Bierlich et al., A comprehensive guide to the physics and usage of PYTHIA 8.3 (2022), https://doi.org/10.21468/SciPostPhysCodeb.8

J. Y. Araz, B. Fuks, and G. Polykratis, Simplified fast detector simulation in MADANALYSIS 5, Eur. Phys. J. C 81 (2021) 329, https://doi.org/10.1140/epjc/s10052-021-09052-5

M. Cacciari, G. P. Salam, and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896, https://doi.org/10.1140/epjc/s10052-012-1896-2

Downloads

Published

2023-09-18

How to Cite

1.
Fortuna F. DM-SM interactions mediated by spin-one particles: EFT study. Supl. Rev. Mex. Fis. [Internet]. 2023 Sep. 18 [cited 2024 Dec. 4];4(2):021117 1-5. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/7145