Dark sector of a Higgs portal with Q4 symmetric matter

Authors

  • Antonio Enrique Cárcamo Hernández Universidad Técnica Federico Santa María, and Centro Científico-Tecnológico de Valparaíso
  • María Catalina Espinoza Hernández Instituto de Física, UNAM
  • Juan Carlos Gómez-Izquierdo Instituto Politécnico Nacional
  • Myriam Mondragón Instituto de Física, UNAM

DOI:

https://doi.org/10.31349/SuplRevMexFis.4.021136

Keywords:

Dark matter, Discrete symmetry, Multi-Higgs phenomenology

Abstract

We describe the phenomenology of the scalar and dark matter sectors of a BSM theory with Q4 symmetry among the SM fermions. The model features a Higgs portal to a dark sector comprised of heavy right handed neutrinos. We discuss relic abundance as well as direct detection constraints on the DM candidate.

References

A. E. Cárcamo Hernández et al., Fermion masses and mixings, dark matter, leptogenesis and g - 2 muon anomaly in an extended 2HDM with inverse seesaw, Eur. Phys. J. Plus 137 (2022) 1224, https://doi.org/10.1140/epjp/s13360-022-03432-w

P. M. Ferreira et al., Vacuum Instabilities in the N2HDM, JHEP 2019 (2019) 6, https://doi.org/10.1007/JHEP09(2019)006

W. G. Hollik, G.Weiglein, and J. Wittbrodt, Impact of Vacuum Stability Constraints on the Phenomenology of Supersymmetric Models, JHEP 2019 (2019) 109, https://doi.org/10.1007/JHEP03(2019)109

M. Maniatis and D. Mehta, Minimizing Higgs Potentials via Numerical Polynomial Homotopy Continuation, Eur. Phys. J. Plus 127 (2012) 91, https://doi.org/10.1140/epjp/i2012-12091-1

S. Coleman, The Fate of the False Vacuum: Semiclassical Theory, Phys. Rev. D 15 (1977) 2929, https://doi.org/10.1103/PhysRevD.15.2929

C. G. Callan, Jr. and S. R. Coleman, The Fate of the False Vacuum. II. First Quantum Corrections, Phys. Rev. D 16 (1977) 1762, https://doi.org/10.1103/PhysRevD.16.1762

C.-A. Deledalle et al., Closed-form expressions of the eigen decomposition of 2 x 2 and 3 x 3 Hermitian matrices, Research report, Universite de Lyon (2017), https://hal.archives-ouvertes.fr/hal-01501221

A. M. Sirunyan et al., Search for a standard model-like Higgs boson in the mass range between 70 and 110 GeV in the diphoton final state in proton-proton collisions at √ s = 8 and 13 TeV, Phys. Lett. B 793 (2019) 320, https://doi.org/10.1016/j.physletb.2019.03.064

P. Bechtle et al., Applying Exclusion Likelihoods from LHC Searches to Extended Higgs Sectors, Eur. Phys. J. C 75 (2015) 421, https://doi.org/10.1140/epjc/s10052-015-3650-z

P. Bechtle et al., HiggsBounds-5: Testing Higgs Sectors in the LHC 13 TeV Era, Eur. Phys. J. C 80 (2020) 1211, https://doi.org/10.1140/epjc/s10052-020-08557-9

F. Staub, Automatic calculation of supersymmetric renormalization group equations and loop corrections, Comput. Phys. Commun. 182 (2011) 808, https://doi.org/10.1016/j.cpc.2010.11.030

F. Staub, From Superpotential to Model Files for FeynArts and CalcHep/CompHep, Comput. Phys. Commun. 181 (2010) 1077, https://doi.org/10.1016/j.cpc.2010.01.011

F. Staub, Automatic Calculation of supersymmetric Renormalization Group Equations and Self Energies, Comput. Phys. Commun. 182 (2011) 808, https://doi.org/10.1016/j.cpc.2010.11.030

F. Staub, SARAH 3.2: Dirac Gauginos, UFO output, and more, Comput. Phys. Commun. 184 (2013) 1792, https://doi.org/10.1016/j.cpc.2013.02.019

F. Staub, Exploring new models in all detail with SARAH, Adv. High Energy Phys. 2015 (2015) 840780, https://doi.org/10.1155/2015/840780

W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e+ e- colliders, Comput. Phys. Commun. 153 (2003) 275, https://doi.org/10.1016/S0010-4655(03)00222-4

W. Porod and F. Staub, SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458, https://doi.org/10.1016/j.cpc.2012.05.021

G. Bélanger et al., micrOMEGAs 3: A program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960, https://doi.org/10.1016/j.cpc.2013.10.016

G. Bélanger et al., micrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun. 192 (2015) 322, https://doi.org/10.1016/j.cpc.2015.03.003

D. Barducci et al., Collider limits on new physics within micrOMEGAs 4.3, Comput. Phys. Commun. 222 (2018) 327, https://doi.org/10.1016/j.cpc.2017.08.028

G. Bélanger et al., micrOMEGAs5.0 : Freeze-in, Comput. Phys. Commun. 231 (2018) 173, https://doi.org/10.1016/j.cpc.2018.04.027

G. D. Martinez et al., Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module, Eur. Phys. J. C 77 (2017) 761, https://doi.org/10.1140/epjc/s10052-017-5274-y

P. Scott, Pippi - painless parsing, post-processing and plotting of posterior and likelihood samples, Eur. Phys. J. Plus 127 (2012) 138, https://doi.org/10.1140/epjp/i2012-12138-3

E. Del Nobile, The Theory of Direct Dark Matter Detection: A Guide to Computations (2021), https://doi.org/10.1007/978-3-030-95228-0

E. Aprile et al., Dark Matter Search Results from a One TonYear Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302, https://doi.org/10.1103/PhysRevLett.121.111302

N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6, https://doi.org/10.1051/0004-6361/201833910

T. Bringmann et al., DarkBit: A GAMBIT module for computing dark matter observables and likelihoods, Eur. Phys. J. C 77 (2017) 831, https://doi.org/10.1140/epjc/s10052-017-5155-4

P. Athron et al., Global analyses of Higgs portal singlet dark matter models using GAMBIT, Eur. Phys. J. C 79 (2019) 38, https://doi.org/10.1140/epjc/s10052-018-6513-6

M. Schumann et al., Dark matter sensitivity of multi-ton liquid xenon detectors, JCAP 10 (2015) 016, https://doi.org/10.1088/1475-7516/2015/10/016

J. Billard, L. Strigari, and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 (2014) 023524, https://doi.org/10.1103/PhysRevD.89.023524

Downloads

Published

2024-03-19

How to Cite

1.
Cárcamo Hernández AE, Espinoza Hernández MC, Gómez-Izquierdo JC, Mondragón M. Dark sector of a Higgs portal with Q4 symmetric matter. Supl. Rev. Mex. Fis. [Internet]. 2024 Mar. 19 [cited 2024 Dec. 4];4(2):021136 1-6. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/7146