Multiplicity of charged and identified particles within jets

Authors

  • Eleazar Cuautle Flores ICN-UNAM
  • Saksevul Arias Santiz CIC-IPN

DOI:

https://doi.org/10.31349/SuplRevMexFis.4.021118

Keywords:

Quantum chromodynamics; PYTHIA 8.3

Abstract

Jets are commonly used to study Quantum Chromodynamics and search for physics beyond the Standard model. Recent experimental results are analyzed to study hard and soft hadron production mechanisms within and out of the jets. The result of this work is the study of hadron production within and out of the jets produced in proton-proton collisions generated using Pythia 8.3 event generator. We report color reconnection effects on jet multiplicity, multiplicity for identified particles within the jets and transverse momenta distributions at 7 and 13 TeV.

References

A.Polyakov, A Similarity hypothesis in the strong interactions. 1. Multiple hadron production in e +e − annihilation, Zh. Sov. Phys. JETP 32 (1971) 296

Z. Koba, H. B. Nielsen, and P. Olesen, Scaling of multiplicity distributions in high-energy hadron collisions, Nucl. Phys. B 40 (1972) 317, https://doi.org/10.1016/0550-3213(72)90551-2

Y. Kulchitsky and P. Tsiareshka, Study of the KNO scaling in pp collisions at √ s from 0.9 to 13 TeV using results of the ATLAS at the LHC, Eur. Phys. J. C 82 (2022) 462, https://doi.org/10.1140/epjc/s10052-022-10420-y

A. Tumasyan et al., Search for new particles in events with energetic jets and large missing transverse momentum in protonproton collisions at √ s = 13 TeV, JHEP 2021 (2021) 153, https://doi.org/10.1007/JHEP11(2021)153

A. M. Sirunyan et al., Search for long-lived particles using displaced jets in proton-proton collisions at √ s = 13 TeV, Phys. Rev. D 104 (2021) 012015, https://doi.org/10.1103/PhysRevD.104.012015

G. Aad et al., A search for the decays of stopped longlived particles at √ s = 13 TeV with the ATLAS detector, JHEP 2021 (2021) 173, https://doi.org/10.1007/JHEP07(2021)173

G. Aad et al., Search for bottom-squark pair production in pp collision events at √ s = 13 TeV with hadronically decaying τ -leptons, b-jets and missing transverse momentum using the ATLAS detector, Phys. Rev. D 104 (2021) 032014, https://doi.org/10.1103/PhysRevD.104.032014

P. T. Komiske, E. M. Metodiev, and J. Thaler, An operational definition of quark and gluon jets, JHEP 2018 (2018) 059, https://doi.org/10.1007/JHEP11(2018)059

S. Acharya et al., Production of K0 S, Λ (Λ) ¯ , Ξ ±, and Ω ± in jets and in the underlying event in pp and p-Pb collisions, JHEP 2023 (2023) 136, https://doi.org/10.1007/JHEP07(2023)136

S. Acharya et al., Λ + c Production and Baryon-to-Meson Ratios in pp and p-Pb Collisions at √ sNN =5.02 TeV at the LHC, Phys. Rev. Lett. 127 (2021) 202301, https://doi.org/10.1103/PhysRevLett.127.202301

C. Bierlich et al., A comprehensive guide to the physics and usage of PYTHIA 8.3 (2022), https://doi.org/10.21468/SciPostPhysCodeb.8

S. Arias, E. Cuautle, and H. León Vargas, Jet fragmentation properties with CMS open-data, Phys. Scripta 98 (2023) 035305, https://doi.org/10.1088/1402-4896/acba51

A. Ortiz Velasquez et al., Color Reconnection and Flowlike Patterns in pp Collisions, Phys. Rev. Lett. 111 (2013) 042001, https://doi.org/10.1103/PhysRevLett. 111.042001

B. B. Abelev et al., Multiplicity dependence of the average transverse momentum in pp, p-Pb, and Pb-Pb collisions at the LHC, Phys. Lett. B 727 (2013) 371, https://doi.org/10.1016/j.physletb.2013.10.054

R. Vértesi, A. Gémes, and G. G. Barnaföldi, Koba-Nielsen-Olesen-like scaling within a jet in proton-proton collisions at LHC energies, Phys. Rev. D 103 (2021) L051503, https://doi.org/10.1103/PhysRevD.103.L051503

P. Skands, S. Carrazza, and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune, Eur. Phys. J. C 74 (2014) 3024, https://doi.org/10.1140/epjc/s10052-014-3024-y

J. R. Christiansen and P. Z. Skands, String Formation Beyond Leading Colour, JHEP 2015 (2015) 3, https://doi.org/10.1007/JHEP08(2015)003

C. Bierlich and J. R. Christiansen, Effects of color reconnection on hadron flavor observables, Phys. Rev. D 92 (2015) 094010, https://doi.org/10.1103/PhysRevD.92.094010

J. Bellm et al., Herwig 7.0/Herwig++ 3.0 release note, Eur. Phys. J. C 76 (2016) 196, https://doi.org/10.1140/epjc/s10052-016-4018-8

R. J. Fries, V. Greco, and P. Sorensen, Coalescence Models For Hadron Formation From Quark Gluon Plasma, Ann. Rev. Nucl. Part. Sci. 58 (2008) 177, https://doi.org/10.1146/annurev.nucl.58.110707.171134

J. Adam et al., Multiplicity dependence of charged pion, kaon, and (anti)proton production at large transverse momentum in p-Pb collisions at √ sNN = 5.02 TeV, Phys. Lett. B 760 (2016) 720, https://doi.org/10.1016/j. physletb.2016.07.050

V. Khachatryan et al., Multiplicity and rapidity dependence of strange hadron production in pp, pPb, and PbPb collisions at the LHC, Phys. Lett. B 768 (2017) 103, https://doi.org/10.1016/j.physletb.2017.01.075

J. L. Nagle and W. A. Zajc, Small System Collectivity in Relativistic Hadronic and Nuclear Collisions, Ann. Rev. Nucl. Part. Sci. 68 (2018) 211, https://doi.org/10.1146/annurev-nucl-101916-123209

H. León Vargas and the ALICE collaboration, Connecting the underlying event with jet properties in pp collisions at √ s = 7 TeV with the ALICE experiment, J. Phys. Conf. Ser. 389 (2012) 012004, https://doi.org/10.1088/1742-6596/389/1/012004

Downloads

Published

2023-09-18

How to Cite

1.
Cuautle Flores E, Arias Santiz S. Multiplicity of charged and identified particles within jets. Supl. Rev. Mex. Fis. [Internet]. 2023 Sep. 18 [cited 2024 Dec. 4];4(2):021118 1-5. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/7155