Quantum entropy production rate of quantum markov semigroups

Authors

  • J. R. Bolaños-Servín UAM-I

DOI:

https://doi.org/10.31349/SuplRevMexFis.6.011309

Keywords:

Quantum markov semigroups; entropy production; equilibrium; detailed balance; reversibility; circulant; G-circulant

Abstract

This paper explores various perspectives on Quantum Detailed Balance and the Entropy Production Rate within the framework of Quantum Markov Semigroups. Using the generators of these semigroups, formulated according to the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) theorem, and their respective adjoints, we identify two contrasting families of Quantum Markov Semigroups. The first family demonstrates a situation where the condition for Quantum Detailed Balance is violated, yet the entropy production rate is zero. In contrast, the second family reveals cases where the quantum entropy production rate aligns with an interpretation of Quantum Detailed Balance. These findings provide insights into the relationship between quantum detailed balance and entropy production rate in open systems.

References

L. Accardi, F. Fagnola and R. Quezada, Dynamical detailed balance for non-equilibrium stationary states, in Proceedings of the International Conference in Memoriam of Shuichi Tasaki, Bussei Kenkyu 97 (2011) 318

G.S. Agarwal, Open quantum Markovian systems and the microreversibility, Z. Physik, 258 (1973) 409, https://doi.org/10.1007/BF01391504

R. Alicki, On the detailed balance condition for nonHamiltonian systems, Rep. Math. Phys., 10 (1976) 249, https://doi.org/10.1016/0034-4877(76)90046-X

J.R. Bolaños-Servín and R. Quezada, The Θ-KMS adjoint and time reversed quantum Markov semigroups, Inf. Dim. Anal. Quant. Prob. Relat. Top. 18 (2015) 1550016. https://doi.org/10.1142/S0219025715500162

J. R. Bolaños-Servín and R. Quezada, A cycle representation and entropy production for circulant quantum Markov semigroups, Inf. Dim. Anal. Quant. Prob. Relat. Top. 16 (2013) 1350016, https://doi.org/10.1142/S0219025713500161

J. R. Bolaños-Servín, R. Quezada and J. Vázquez-Becerra, G-Circulant Quantum Markov Semigroups, Open Systems & Information Dynamics 30 (2023) 2350002, https://doi.org/10.1142/S1230161223500026

F. Cipriani, Dirichlet forms and Markovian semigroups on standard forms of von Neumann algebras. J. Funct. Anal. 147 (1997) 259, https://doi.org/10.1006/jfan.1996.3063

F. Cipriani, Dirichlet forms on noncommutative spaces, in Quantum Potential Theory, Lecture Notes in Math., 1954, Berlin-Heidelberg-New York: Springer, 2008, pp. 161–276. https://doi.org/10.1007/978-3-540-69365-95

F. Fagnola and R. Rebolledo, From classical to quantum entropy production, in Proceedings of the 29th Conference on Quantum Probability and Related Topics, QP-PQ Quantum Probability and White Noise Analysis Vol. 25, (2010) 245-261. https://doi.org/10.1142/97898142954370017

F. Fagnola and V. Umanitè, Generic Quantum Markov Semigroups, Cycle Representation and Deviation From Equilibrium, Inf. Dim. Anal. Quant. Prob. Relat. Top. 15 (2012) 1250016. https://doi.org/10.1142/S0219025712500166

F. Fagnola and V. Umanitè, Detailed Balance, Time Reversal, and Generators of Quantum Markov Semigroups, Mathematical Notes 84 (2008) 108, https://doi.org/10.1134/S0001434608070092

F. Fagnola and V. Umanitè, Generators of Detailed Balance Quantum Markov Semigroups, Inf. Dim. Anal. Quant. Prob. Relat. Top. 10 (2007) 335. https://doi.org/10.1142/S0219025707002762

S. Goldstein and J.M. Lindsay: KMS symmetric semigroups. Math. Z. 219 (1995) 591, https://doi.org/10.1007/BF02572383

K.L. Kalpazidou, Cycle representations of Markov processes (Springer-Verlag 1995). https://doi.org/10.1007/978-1-4757-3929-9

A. Kossakowski, A. Frigerio, V. and M. Verri, Quantum detailed balance and KMS condition, Comm. Math. Phys. 57 (1977) 97, https://doi.org/10.1007/BF01625769

D. Manzano, A short introduction to the Lindblad master equation, AIP Advances 10 (2020) 025106, https://doi.org/10.1063/1.5115323

D. Petz, Quantum Information Theory and Quantum Statistics 1st ed. (Springer-Verlag, Berlin, 2008) https://doi.org/10.1007/978-3-540-74636-2

M-P. Qian, M. Qian and D-J. Jiang, Mathematical Theory of Nonequilibrium Steady States 1st ed. (Springer-Verlag, Berlin, 2004), https://doi.org/10.1007/b94615

Downloads

Published

2025-06-12

How to Cite

1.
Bolaños J. Quantum entropy production rate of quantum markov semigroups. Supl. Rev. Mex. Fis. [Internet]. 2025 Jun. 12 [cited 2025 Jul. 1];6(1):011309 1-6. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/7969