Applications of information theory to compact objects: configurational entropy as a stability criterion

Authors

  • P. S. Koliogiannis University of Zagreb
  • M. Vikiaris Aristotle University of Thessaloniki
  • G. Tsalis Aristotle University of Thessaloniki
  • C. Panos Aristotle University of Thessaloniki
  • V. Petousis Czech Technical University
  • M. Veselsky Czech Technical University
  • Ch. C. Moustakidis Aristotle University of Thessaloniki

DOI:

https://doi.org/10.31349/SuplRevMexFis.6.011301

Keywords:

Configurational entropy; Stability condition; Compact objects; Equation of state

Abstract

M. Gleiser and N. Jiang [Phys. Rev. D 92, 044046, 2015] established that, within the simple Fermi gas model and self-gravitating complex scalar field configurations, the stability regions of neutron stars—determined using conventional perturbation techniques—align with the critical points of the configurational entropy, with deviations of only a few percent. Extending their work, we employ a range of realistic equations of state, suitable to describe neutron stars, quark stars, and hybrid stars (twin stars), to explore the potential correlation. Our findings indicate that, at least quantitatively, the proposed stability prediction lacks universal validity for neutron and quark stars. Furthermore, to enrich our analysis, we compute the configurational entropy for bosonic and fermionic systems (interacting boson and Fermi gases), revealing a strong correlation between the stability points predicted by configurational entropy and those obtained through traditional methods, with a slight dependence on interaction strength. In conclusion, configurational entropy can be a valuable tool for studying compact object stability, though its predictive accuracy depends on the specific equation of state.

References

J. Sañudo and A. Pacheco, Complexity and white-dwarf structure, Phys. Lett. A 373 (2009) 807, https://doi.org/10.1016/j.physleta.2009.01.008

K. Chatzisavvas et al., Complexity and neutron star structure, Phys. Lett. A 373 (2009) 3901, https://doi.org/10.1016/j.physleta.2009.08.042

M. de Avellar and J. Horvath, Entropy, complexity and disequilibrium in compact stars, Phys. Lett. A 376 (2012) 1085, https://doi.org/10.1016/j.physleta.2012.02.012

M. de Avellar, et al., Information theoretical methods as discerning quantifiers of the equations of state of neutron stars, Phys. Lett. A 378 (2014) 3481, https://doi.org/10.1016/j.physleta.2014.10.011

H. Adhitya and A. Sulaksono, Complexity and neutron stars with crust and hyperon core, J. Phys.: Conf. Ser. 1572 (2020) 012012, https://doi.org/10.1088/1742-6596/1572/1/012012

E. Contreras and E. Fuenmayor, Gravitational cracking and complexity in the framework of gravitational decoupling, Phys. Rev. D 103 (2021) 124065, https://doi.org/10.1103/PhysRevD.103.124065

C. Posada, J. Hladík, and Z. Stuchlík, Dynamical stability of the modified Tolman VII solution, Phys. Rev. D 103 (2021) 104067, https://doi.org/10.1103/PhysRevD.103.104067

L. Herrera, New definition of complexity for self-gravitating fluid distributions: The spherically symmetric, static case, Phys. Rev. D 97 (2018) 044010, https://doi.org/10.1103/PhysRevD.97.044010

L. Herrera, A. Di Prisco, and J. Ospino, Definition of complexity for dynamical spherically symmetric dissipative self-gravitating fluid distributions, Phys. Rev. D 98 (2018) 104059, https://doi.org/10.1103/PhysRevD.98.104059

L. Herrera, A. Di Prisco, and J. Ospino, Complexity factors for axially symmetric static sources, Phys. Rev. D 99 (2019) 044049, https://doi.org/10.1103/PhysRevD.99.044049

L. Herrera, A. Di Prisco, and J. Carot, Complexity of the Bondi Metric, Phys. Rev. D 99 (2019) 124028, https://doi.org/10.1103/PhysRevD.99.124028

M. Sharif and I. Butt, Complexity factor for charged spherical system, Eur. Phys. J. C 78 (2018) 688, https://doi.org/10.1140/epjc/s10052-018-6121-5

M. Sharif and I. I. Butt, Complexity factor for static cylindrical system, Eur. Phys. J. C 78 (2018) 850, https://doi.org/10.1140/epjc/s10052-018-6330-y

M. Sharif, A. Majid, and M. M. M. Nasir, Complexity factor for self-gravitating system in modified Gauss-Bonnet gravity, Int. J. Mod. Phys. A 34 (2019) 1950210, https://doi.org/10.1142/S0217751X19502105

M. Sharif and K. Hassan, Complexity of dynamical cylindrical system in f(G, T) gravity, Mod. Phys. Lett. A 37 (2022) 2250027, https://doi.org/10.1142/S0217732322500274

Z. Yousaf, M. Z. Bhatti, and T. Naseer, Study of static charged spherical structure in f(R, T, Q) gravity, Eur. Phys. J. Plus 135 (2020) 323, https://doi.org/10.1140/epjp/s13360-020-00332-9

Z. Yousaf, et al., Influence of modification of gravity on the complexity factor of static spherical structures, Mon. Not. R. Astron. Soc. 495 (2020) 4334, https://doi.org/10.1093/mnras/staa1470

Z. Yousaf, M. Z. Bhatti, and T. Naseer, Measure of complexity for dynamical self-gravitating structures, Int. J. Mod. Phys. D 29 (2020) 2050061, https://doi.org/10.1142/S0218271820500613

Z. Yousaf, et al., Measure of complexity in self-gravitating systems using structure scalars, New Astron. 84 (2021) 101541, https://doi.org/https://doi.org/10.1016/j.newast.2020.101541

Z. Yousaf, M. Bhatti, and M. Nasir, On the study of complexity for charged self-gravitating systems, Chin. J. Phys. 77 (2022) 2078, https://doi.org/10.1016/j.cjph.2022.01.005

A. R. P. Moreira and S.-H. Dong, Probability measures of fermions on branes, Eur. Phys. J. C 83 (2023) 1064, https://doi.org/10.1140/epjc/s10052-023-12224-0

A. R. P. Moreira and S.-H. Dong, Brane stability under f(Q, T ) gravity, Eur. Phys. J. C 84 (2024) 1156, https://doi.org/10.1140/epjc/s10052-024-13552-5

A. R. P. Moreira, S.-H. Dong, and F. Ahmed, New mechanism for fermion localization in the presence of anti-curvature tensor, Eur. Phys. J. C 84 (2024) 913, https://doi.org/10.1140/epjc/s10052-024-13260-0

A. Moreira, F. Ahmed, and S.-H. Dong, Fermion localization on the brane in Ricci-inverse gravity, Ann. Phys. 469 (2024) 169763, https://doi.org/10.1016/j.aop.2024.169763

M. Gleiser and N. Stamatopoulos, Entropic measure for localized energy configurations: Kinks, bounces, and bubbles, Phys. Lett. B 713 (2012) 304, https://doi.org/10.1016/j.physletb.2012.05.064

M. Gleiser and D. Sowinski, Information-entropic stability bound for compact objects: Application to Q-balls and the Chandrasekhar limit of polytropes, Phys. Lett. B 727 (2013) 272, https://doi.org/10.1016/j.physletb.2013.10.005

M. Gleiser and N. Jiang, Stability bounds on compact astrophysical objects from information-entropic measure, Phys. Rev. D 92 (2015) 044046, https://doi.org/10.1103/PhysRevD.92.044046

M. Gleiser and D. Sowinski, Information-entropic signature of the critical point, Phys. Lett. B 747 (2015) 125, https://doi.org/10.1016/j.physletb.2015.05.058

N. R. Braga, Information versus stability in an anti-de Sitter black hole, Phys. Lett. B 797 (2019) 134919, https://doi.org/10.1016/j.physletb.2019.134919

N. R. F. Braga and R. da Mata, Configuration entropy for quarkonium in a finite density plasma, Phys. Rev. D 101 (2020) 105016, https://doi.org/10.1103/PhysRevD.101.105016

S. H. Alexander, K. Yagi, and N. Yunes, An entropy-area law for neutron stars near the black hole threshold, Class. Quantum Grav. 36 (2019) 015010, https://doi.org/10.1088/1361-6382/aaf14b

R. da Rocha, AdS graviton stars and differential configurational entropy, Phys. Lett. B 823 (2021) 136729, https://doi.org/10.1016/j.physletb.2021.136729

G. Karapetyan, The nuclear configurational entropy approach to dynamical QCD effects, Phys. Lett. B 786 (2018) 418, https://doi.org/10.1016/j.physletb.2018.09.058

R. A. C. Correa, et al., Configurational entropy as a constraint for Gauss-Bonnet braneworld models, Phys. Rev. D 94 (2016) 083509, https://doi.org/10.1103/PhysRevD.94.083509

W. Barreto, A. Herrera-Aguilar, and R. da Rocha, Configurational entropy of generalized sine-Gordon-type models, Ann. Phys. 447 (2022) 169142, https://doi.org/10.1016/j.aop.2022.169142

S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars (John Wiley & Sons, New York, 1983). https://doi.org/10.1002/9783527617661

N. Glendenning, Compact Stars: Nuclear Physics, Particle Physics, and General Relativity (Springer-Verlag, New York, 1997). https://doi.org/10.1007/978-1-4684-0491-3

P. Haensel, A. Potekhin, and D. Yakovlev, Neutron Stars 1: Equation of State and Structure (SpringerVerlag, New York, 2007). https://doi.org/10.1007/978-0-387-47301-7

Y. Zeldovich and I. Novikov, Stars and Relativity (Dover Publications, INC, Mineapolis New York, 1971)

S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (John Wiley & Sons, New York, 1972)

B. Schutz, A First Course in General Relativity, 1st. ed., (Cambridge University Press, Cambridge, 1985)

J. Schaffner-Bielich, Compact Star Physics (Cambridge University Press, Cambridge, 2020). https://doi.org/10.1017/9781316848357

S. Chandrasekhar, The Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity., Astrophys. J. 140 (1964) 417, https://doi.org/10.1086/147938

S. Chandrasekhar, Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity, Phys. Rev. Lett. 12 (1964) 114, https://doi.org/10.1103/PhysRevLett.12.114

P. S. Koliogiannis, et al., Configurational entropy as a probe of the stability condition of compact objects, Phys. Rev. D 107 (2023) 044069, https://doi.org/10.1103/PhysRevD.107.044069

P. S. Koliogiannis, et al., Configurational entropy and stability conditions of fermion and boson stars, Phys. Rev. D 110 (2024) 104077, https://doi.org/10.1103/PhysRevD.110.104077

J. R. Oppenheimer and G. M. Volkoff, On Massive Neutron Cores, Phys. Rev. 55 (1939) 374, https://doi.org/10.1103/PhysRev.55.374

A. M. Raghoonundun and D. W. Hobill, Possible physical realizations of the Tolman VII solution, Phys. Rev. D 92 (2015) 124005, https://doi.org/10.1103/PhysRevD.92.124005

P. S. Negi and M. C. Durgapal, Stable Ultracompact Objects, Gen. Relativ. Gravit. 31 (1999) 13, https://doi.org/10.1023/A:1018807219245

P. Negi and M. Durgapal, Relativistic supermassive stars, Astrophys. Space Sci. 275 (2001) 185, https://doi.org/10.1023/A:1002707730439

C. Moustakidis, The stability of relativistic stars and the role of the adiabatic index, Gen. Relativ. Gravit. 49 (2017) 68, https://doi.org/10.1007/s10714-017-2232-9

P. S. Koliogiannis and C. C. Moustakidis, Effects of the equation of state on the bulk properties of maximally rotating neutron stars, Phys. Rev. C 101 (2020) 015805, https://doi.org/10.1103/PhysRevC.101.015805

C. Zhang and R. B. Mann, Unified interacting quark matter and its astrophysical implications, Phys. Rev. D 103 (2021) 063018, https://doi.org/10.1103/PhysRevD.103.063018

M. G. Alford, S. Han, and M. Prakash, Generic conditions for stable hybrid stars, Phys. Rev. D 88 (2013) 083013, https://doi.org/10.1103/PhysRevD.88.083013

S. Typel, Equations of state for astrophysical simulations from generalized relativistic density functionals, J. Phys. G: Nucl. Part. Phys. 45 (2018) 114001, https://doi.org/10.1088/1361-6471/aadea5

L. Tsaloukidis, et al., Twin stars as probes of the nuclear equation of state: Effects of rotation through the PSR J0952- 0607 pulsar and constraints via the tidal deformability from the GW170817 event, Phys. Rev. D 107 (2023) 023012, https://doi.org/10.1103/PhysRevD.107.023012

G. Narain, J. Schaffner-Bielich, and I. N. Mishustin, Compact stars made of fermionic dark matter, Phys. Rev. D 74 (2006) 063003, https://doi.org/10.1103/PhysRevD.74.063003

M. Colpi, S. L. Shapiro, and I. Wasserman, Boson Stars: Gravitational Equilibria of Self-Interacting Scalar Fields, Phys. Rev. Lett. 57 (1986) 2485, https://doi.org/10.1103/PhysRevLett.57.2485

D. Rafiei Karkevandi et al., Bosonic dark matter in neutron stars and its effect on gravitational wave signal, Phys. Rev. D 105 (2022) 023001, https://doi.org/10.1103/PhysRevD.105.023001

S. Shakeri and D. R. Karkevandi, Bosonic dark matter in light of the NICER precise mass-radius measurements, Phys. Rev. D 109 (2024) 043029, https://doi.org/10.1103/PhysRevD.109.043029

P. Agnihotri, J. Schaffner-Bielich, and I. N. Mishustin, Boson stars with repulsive self-interactions, Phys. Rev. D 79 (2009) 084033, https://doi.org/10.1103/PhysRevD.79.084033

N. Rutherford et al., Constraining bosonic asymmetric dark matter with neutron star mass-radius measurements, Phys. Rev. D 107 (2023) 103051, https://doi.org/10.1103/PhysRevD.107.103051

S. L. Pitz and J. Schaffner-Bielich, Generating ultracompact boson stars with modified scalar potentials, Phys. Rev. D 108 (2023) 103043, https://doi.org/10.1103/PhysRevD.108.103043

Downloads

Published

2025-04-24

How to Cite

1.
Koliogiannis PS, Vikiaris M, Tsalis G, Panos C, Petousis V, Veselsky M, Moustakidis C. Applications of information theory to compact objects: configurational entropy as a stability criterion. Supl. Rev. Mex. Fis. [Internet]. 2025 Apr. 24 [cited 2025 Jul. 1];6(1):011301 1-9. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/7974