Information-theoretical quantities in the thermodynamical transcription of the density functional theory
DOI:
https://doi.org/10.31349/SuplRevMexFis.6.011304Keywords:
density functional theory, local thermodynamics, phase-space Shannon entropy, phase-space Fisher informationAbstract
The Ghosh-Berkowitz-Parr idea of density functional theory as local thermodynamics is revisited. It is emphasized that the kinetic energy density and consequently the local temperature are not unique. It is highlighted that the extremal principle for the Shannon entropy and the Fisher information leads to constant temperature. Relations for the phase-space Fisher information, fidelity and relative Rényi entropy are summarized.
References
S.K . Ghosh, M. Berkowitz and R. G. Parr, Transcription of the ground-state density-functional theory into a local thermodynamics, Proc. Natl. Acad. Sci. USA 81 (1984) 8028, https://doi.org/10.1073/pnas.81.24.8028
Á. Nagy, Thermodynamical transcription of the density functional theory with constant temperature, Int. J. Quantum Chem. 117 (2017) e5396, https://doi.org/10.1002/qua.25396
Á. Nagy, Thermodynamical transcription of the density functional theory with minimum Fisher information, Chem. Phys. Lett. 695 (2018) 149, https://doi.org/10.1016/j.cplett.2018.02.009
C. E. Shannon, A mathematical theory of communication, Bell. Syst. Tech. J. 27 (1948) 623, https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
R. A. Fisher, Theory of Statistical Estimation, Proc. Cambridge Philos. Soc. 22 (1925) 700, https://doi.org/10.1017/s0305004100009580
Á. Nagy, Information theoretical and thermodynamic view of the excited-state density functional theory of Coulomb systems, J. Chem. Phys. 153 (2020) 154103, https://doi.org/10.1063/5.0015611
A. Rényi, On Measures of Entropy and Information, In Berkeley Symp. on Math. Statist. and Prob., 4.1 (1961) p. 547
Á. Nagy, Phase-space relative Renyi entropy in density functional theory Int. J. Quantum Chem. 124 (2023) e27226, https://doi.org/10.1002/qua.27226
P. W. Ayers, M. Levy, Á. Nagy, Time-independent density functional theory for excited states of Coulomb systems, Phys. Rev. A 85 (2012) 042518, https://doi.org/10.1103/physreva.85.042518
P. W. Ayers, M. Levy, Á. Nagy, Kohn-Sham theory for excited states of Coulomb systems, J Chem. Phys. 143 (2015) 191101, https://doi.org/10.1063/1.4934963
P. W. Ayers, M. Levy, Á. Nagy, Time-independent densityfunctional theory for degenerate excited states of Coulomb systems, Theor. Chim. Acc. 137 (2015) 152, https://doi.org/10.1007/s00214-018-2352-7
S. Kullback, R. A. Leibler, On information and Sufficiency, Ann. Math. Stat. 22 (1951) 79, https://doi.org/10.1214/aoms/1177729694
S. J. Gu, Density-Functional Fidelity Approach to Quantum Phase Transition, Chi. Phys. Lett. 26 (2009) 026401, https://doi.org/10.1088/0256-307x/26/2/026401
Á. Nagy, Fisher information and density functional theory, Int. J. Quant. Chem. 122 (2022) e26679, https://doi.org/10.1002/qua.26679
P. W. Ayers, Density per particle as a descriptor of Coulombic systems, Proc. Natl. Acad. Sci. 97 (2000) 1959, https://www.pnas.org/content/97/5/1959
R. Carbó, J. Leyda, M. Arnau, How similar is a molecule to another? An electron density measure of similarity between two molecular structures, Int. J. Quantum Chem. 17 (1980) 1185, https://doi.org/10.1002/qua.560170612
P. A. Bouvrie, J. Antolín, J. C. Angulo, Generalized quantum similarity index: applications in atoms, Chem. Phys. Lett. 506 (2011) 326, https://doi.org/10.1016/j.cplett.2011.03.059
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Agnes Nagy

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Suplemento de la Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.