Information theoretic measures of Hookium using generalized pseudo-spectral technique within density functional theory
DOI:
https://doi.org/10.31349/SuplRevMexFis.6.011310Keywords:
Quantum dot, harmonic confinement, Hookium, quantum information entropy, density functional theoryAbstract
Atomic systems subjected to external confinement exhibit a range of intriguing physical properties. In this work, we employ a well-established work-function-based Kohn-Sham density functional theory (DFT) within a generalized pseudospectral (GPS) method to determine the energy eigenvalues and eigenfunctions of Hookium (a two-electron system bound by a harmonic potential). We consider the two cases, viz. (i) Hookium and (ii) Hookium under the influence of a spherical cavity confinement. Two correlation energy functionals like Wigner and Lee-Yang-Parr (LYP) are considered to include explicit correlation energy in the calculation. Furthermore, we provide a comprehensive analysis of the quantum information-theoretic aspects of confined systems by examining the position-space Shannon and Fisher entropies.
References
A.Franciosi and C. G. Van de Walle, Heterojunction band offset engineering, Surf. Sci. Rep. 25 (1996) 1. https://doi.org/10.1016/0167-5729(95)00008-9
G. Schedelbeck et al., Coupled Quantum Dots Fabricated by Cleaved Edge Overgrowth: From Artificial Atoms to Molecules, Science 278 (1997) 1792, https://doi.org/10.1126/science.278.5344.1792
C. M. Lee, C. C. Lam, and S. W. Gu, Polaron effect on lowlying energy spectrum of two electrons bound to a Coulomb impurity in a quantum dot, Phys. Rev. B 61 (2000) 10376, https://doi.org/10.1103/PhysRevB.61.10376
R. K. Pandey, M. K. Harbola, and V. A. Singh, Heliumlike donors in semiconductor quantum dots, J. Phys.: Cond. Matt. 16 (2004) 1769, https://doi.org/10.1088/0953-8984/16/10/009
X. Michalet et al., Quantum dots for live cells, in vivo imaging, and diagnostics, Science 307 (2005) 538, https://doi.org/10.1126/science.1104274
Y. C. Cao, Impurities Enhance Semiconductor Nanocrystal Performance, Science 332 (2011) 48, https://doi.org/10.1126/science.1203702
C. Belver, J. Bedia, and J. Rodriguez, Titania-clay heterostructures with solar photocatalytic applications, App. Cat. B: Env. 176-177 (2015) 278, https://doi.org/10.1016/j.apcatb.2015.04.004
T. V. Bezyazychnaya et al., Light emitting diode-photodiode optoelectronic pairs based on the InAs/InAsSb/InAsSbP heterostructure for the detection of carbon dioxide, Semiconductors 49 (2015) 980, https://doi.org/10.1134/S1063782615070052
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2010), https://doi.org/10.1017/CBO9780511976667
S. R. Gadre, Information entropy and Thomas-Fermi theory, Phys. Rev. A 30 (1984) 620, https://doi.org/10.1103/PhysRevA.30.620
R. J. Yánez, W. Van Assche, and J. S. Dehesa, Position and momentum information entropies of the D-dimensional harmonic oscillator and hydrogen atom, Phys. Rev. A 50 (1994) 3065, https://doi.org/10.1103/PhysRevA.50.3065
E. Kasapoglu, H. Sari, and I. Sökmen, The effect of hydrostatic pressure on optical transitions in quantum-well wires, Physica B Cond. Matt. 353 (2004) 345, https://doi.org/10.1016/j.physb.2004.10.021
P. Winkler, Electron interaction in weakly confining quantum dot potentials, Int. J. Quant. Chem. 100 (2004) 1122, https://doi.org/10.1002/qua.20249
P. Kimani, P. Jones, and P. Winkler, Correlation studies in weakly confining quantum dot potentials, Int. J. Quant. Chem. 108 (2008) 2763, https://doi.org/10.1002/qua.21827
M. Sahin, Third-order nonlinear optical properties of a oneand two-electron spherical quantum dot with and without a hydrogenic impurity, J. App. Phys. 106 (2009) 063710, https://doi.org/10.1063/1.3225100
M. Genkin and E. Lindroth, Effects of screened Coulomb impurities on autoionizing two-electron resonances in spherical quantum dots, Phys. Rev. B 81 (2010) 125315, https://doi.org/10.1103/PhysRevB.81.125315
S. Chakraborty and Y. K. Ho, Autoionization resonance states of two-electron atomic systems with finite spherical confinement, Phys. Rev. A 84 (2011) 032515, https://doi.org/10.1103/PhysRevA.84.032515
Z. Parang, A. Keshavarz, and N. Zamani, Optimization of optical absorption coefficient in double modified Pöschl-Teller quantum wells, J. Comp. Elec. 13 (2014) 1020. https://doi.org/10.1007/s10825-014-0625-5
J. K. Saha, S. Bhattacharyya, and T. Mukherjee, Electronic Structure of Helium Atom in a Quantum Dot*, Comm. Theo. Phys. 65 (2016) 347, https://doi.org/10.1088/0253-6102/65/3/347
J. K. Saha, S. Bhattacharyya, and T. K. Mukherjee, Twoelectron atoms under spatially compressed Debye plasma, Phys. Plas. 23 (2016) 092704, https://doi.org/10.1063/1.4962508
M. C. Onyeaju et al., Linear and Nonlinear Optical Properties in Spherical Quantum Dots: Generalized Hulthén Potential, Few-Body Syst. 57 (2016) 793, https://doi.org/10.1007/s00601-016-1110-4
M. Moshinsky, The Harmonic Oscillator in Modern Physics: From Atoms to Quarks (Gordon and Breach, London, 1969)
R. J. Eden, V. J. Emery, and N. F. Mott, The binding energies of atomic nuclei I. Introduction and general method, Proc. Royal Soc. London. Series A. Math. Phys. Sci. 248 (1958) 266, https://doi.org/10.1098/rspa.1958.0243
V. I. Pupyshev and H. E. Montgomery Spherically symmetric states of Hookium in a cavity, Physica Scr. 90 (2015) 085401, https://doi.org/10.1088/0031-8949/90/8/085401
D. Bielinska-Waz, J. Karwowski, and G. Diercksen, Spectra of confined two-electron atoms, J. Phys. B 34 (2001) 1987, https://doi.org/10.1088/0953-4075/34/10/312
T. Sako and G. H. F. Diercksen, Confined quantum systems: dipole polarizability of the two-electron quantum dot, the hydrogen negative ion and the helium atom, J. Phys. B 36 (2003) 3743, https://doi.org/10.1088/0953-4075/36/18/304
V. V. Bobrikov and V. I. Pupyshev, Isotope effects for molecules in a cavity, Russian Chem. Bull. 54 (2005) 55, https://doi.org/10.1007/s11172-005-0216-5
P. A. Maksym and T. Chakraborty, Quantum dots in a magnetic field: Role of electron-electron interactions, Phys. Rev. Lett. 65 (1990) 108, https://doi.org/10.1103/PhysRevLett.65.108
A. Hazra et al., Structural modifications of two-electron systems under isotropic harmonic confinement, Eur. Phys. J. D 75 (2021) 186, https://doi.org/10.1140/epjd/s10053-021-00196-3
J. Cioslowski and K. Pernal, The ground state of harmonium, The Journal of Chemical Physics 113 (2000) 8434, https://doi.org/10.1063/1.1318767
D. P. O’Neill and P. M. W. Gill, Wave functions and twoelectron probability distributions of the Hooke’s-law atom and helium, Phys. Rev. A 68 (2003) 022505, https://doi.org/10.1103/PhysRevA.68.022505
P.-F. Loos, Hooke’s law correlation in two-electron systems, Phys. Rev. A 81 (2010) 032510, https://doi.org/10.1103/PhysRevA.81.032510
R. J. Eden, V. J. Emery, and N. F. Mott, The binding energies of atomic nuclei I. Introduction and general method, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 248 (1958) 266
C. Martínez-Flores, Shannon entropy and Fisher information for endohedral confined one- and two-electron atoms, Phys. Lett. A 386 (2021) 126988, https://doi.org/10.1016/j.physleta.2020.126988
N. Mukherjee, C. N. Patra, and A. K. Roy, Confined hydrogenlike ions in plasma environments, Phys. Rev. A 104 (2021) 012803, https://doi.org/10.1103/PhysRevA.104.012803
S. Mondal et al., Stability of a two-electron system under pressure confinement: structural and quantum information theoretical analysis, J. Phys. B 56 (2023) 155001, https://dx.doi.org/10.1088/1361-6455/ace177
S. Mondal et al., Information-theoretic measures and Compton profile of H atom under finite oscillator potential, J. Phys. B: At. Mol. Opt. Phys. 57 (2024) 175001, https://doi.org/10.1088/1361-6455/ad5fd3
C. R. Estanón et al., Crámer-Rao complexity of the two-dimensional confined hydrogen, arXiv (2020)
S. Mondal, S. K. Nayek, and J. K. Saha, Ground and doubly excited states of He atom in non-ideal classical plasmas: structural, entanglement and information theoretical measures, Eur. Phys. J. Plus 137 (2022) 373, https://doi.org/10.1140/epjp/s13360-022-02574-1
S. Mondal, K. D. Sen, and J. K. Saha, He atom in a quantum dot: Structural, entanglement, and information-theoretical measures, Phys. Rev. A 105 (2022) 032821, https://doi.org/10.1103/PhysRevA.105.032821
G. Yao and S.-I. Chu, Generalized pseudospectral methods with mappings for bound and resonance state problems, Chem. Phys. Lett. 204 (1993) 381, https://doi.org/10.1016/0009-2614(93)90025-V
V. Sahni and M. K. Harbola, Quantum-Mechanical interpretation of the local many-body potential of density-functional theory, Int. J. Quantum Chem. 38 (1990) 569, https://doi.org/10.1002/qua.560382456
V. Sahni, Y. Li, and M. K. Harbola, Atomic structure in the Pauli-correlated approximation, Phys. Rev. A 45 (1992) 1434, https://doi.org/10.1103/PhysRevA.45.1434
G. Brual, Gregorio and S. M. Rothstein, Rare gas interactions using an improved statistical method, J. Chem. Phys. 69 (1978) 1177, https://doi.org/10.1063/1.436705
C. Lee, W. Yang, and R. G. Parr, Development of the ColleSalvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988) 785, https://doi.org/10.1103/PhysRevB.37.785
K. McDonald, The NAG Numerical PVM Library, In J. Dongarra, K. Madsen, and J. Wasniewski, eds., Applied Parallel Computing Computations in Physics, Chemistry and Engineering Science, vol. 1041 of Lecture Notes in Computer Science (Springer, 1996) pp. 419-428, https://doi.org/10.1007/3-540-60902-4 44
A. K. Roy and S.-I. Chu, Density-functional calculations on singly and doubly excited Rydberg states of many-electron atoms, Phys. Rev. A 65 (2002) 052508, https://doi.org/10.1103/PhysRevA.65.052508
A. K. Roy, Studies on the hollow states of atomic lithium using a density functional approach, J. Phys. B: At. Mol. Opt. Phys. 37 (2004) 4369, https://doi.org/10.1088/0953-4075/37/21/010
A. K. Roy, Density functional studies on the hollow resonances in the Li-isoelectronic sequence (Z = 4-10), J. Phys. B: At. Mol. Opt. Phys. 38 (2005) 1591, https://doi.org/10.1088/0953-4075/38/11/002
A. K. Roy, Calculation of the spiked harmonic oscillators through a generalized pseudospectral method, Phys. Lett. A 321 (2004) 231, https://doi.org/10.1016/j.physleta.2003.12.037
A. K. Roy, Calculation of the bound states of power-law and logarithmic potentials through a generalized pseudospectral method, J. Phys. G: Nucl. Part. Phys. 30 (2004) 269, https://doi.org/10.1088/0954-3899/30/3/003
K. D. Chakladar et al., Quantum-information-theoretic analysis of Zee systems under pressure confinement, Phys. Rev. A 110 (2024) 042819, https://doi.org/10.1103/PhysRevA.110.042819
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Raveena Arya, Santanu Mondal, Amlan K. Roy

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Suplemento de la Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.