Uncertainties and statistical correlations in quantum systems

Authors

  • Robin P. Sagar Universidad Autónoma Metropolitana-Iztapalapa

DOI:

https://doi.org/10.31349/RevMexFis.6.011303

Keywords:

uncertainty quantification statistical correlation, entropic uncertainty relation, phase-space distributions, quantum systems

Abstract

A survey of recent ideas and goals, along with a brief history behind the quantification of uncertainties and statistical correlation in quantum systems is presented. The focus is on ideas and connections taken from information theory, in particular, the quantification of uncertainties via Shannon entropies, the entropic uncertainty relation, and statistical correlation by mutual information. A discussion of phase-space distributions and their use in information theory is also given. An incomplete list of applications, with emphasis on confined quantum systems, is provided. The article concludes by addressing future challenges in these directions.

References

S. R. Gadre, S. B. Sears, S. J. Chakravorty and R. D. Bendale, Some novel characteristics of atomic information entropies, Phys. Rev. A 32 (1985) 2602, https://doi.org/10.1103/PhysRevA.32.2602

M. Ho, V. H. Smith, Jr., D. F. Weaver, R. P. Sagar, R. O. Esquivel, S. Yamamoto, An Information-Entropic Study of Correlated Densities of the Water Molecule, J. Chem. Phys. 109 (1998) 10620, https://doi.org/10.1063/1.477761

K. Ch. Chatzisavvas, Ch. C. Moustakidis and C. P. Panos, Information entropy, information distances, and complexity in atoms, J. Chem. Phys. 123 (2005) 174111, https://doi.org/10.1063/1.2121610

R.F.W. Bader, Atoms in Molecules: A Quantum Theory, (Oxford University Press, New York, 1990)

A. J. Thakkar, The Momentum Density Perspective of the Electronic Structure of Atoms and Molecules, In Advances in Chemical Physics, vol. 128 (John Wiley & Sons, Ltd, 2003) pp. 303, https://doi.org/10.1002/0471484237.ch5

N. L. Guevara, R. P. Sagar and R. O. Esquivel, Shannon information entropy sum as a correlation measure in atomic systems, Phys. Rev. A 67 (2003) 012507, https://doi.org/10.1103/PhysRevA.67.012507

A. Grassi, G. M. Lombardo, N. H. March and R. Pucci, 1/Z expansion, correlation energy, and Shannon entropy of heavy atoms in nonrelativistic limit, Int. J. Quantum Chem. 69 (1998) 721, https://doi.org/10.1002/(SICI)1097-461X(1998)69:6%3C721::AID-QUA4%3E3.0.CO;2-X

M. Ho, D. F. Weaver, V. H. Smith, Jr., R. P. Sagar and R. O. Esquivel, Calculating the Logarithmic Mean Excitation Energy from the Shannon Information Entropy of the Electronic Charge Density, Phys. Rev. A 57 (1998) 4512, https://doi.org/10.1103/PhysRevA.57.4512

R. O. Esquivel, A. L. Rodríguez, R. P. Sagar, M. Ho and V. H. Smith, Jr., Physical Interpretation of Information Entropy: Numerical Evidence of Collins Conjecture, Phys. Rev. A 54 (1996) 259, https://doi.org/10.1103/PhysRevA.54.259

V. Vedral, The Everything-Is-a-Quantum-Wave Interpretation of Quantum Physics, Quantum Rep. 5 (2023) 475, https://doi.org/10.3390/quantum5020031

H. P. Robertson, The Uncertainty Principle, Phys. Rev. 34 (1929) 163, https://doi.org/10.1103/PhysRev.34.163

I. Bialynicki-Birula and J. Mycielski, Uncertainty relations for information entropy in wave mechanics, Commun. Math. Phys. 44 (1975) 129, https://doi.org/10.1007/BF01608825

W. Beckner, Inequalities in Fourier Analysis, Ann. Math. 102 (1975) 159, https://doi.org/10.2307/1970980

R. J. Yáñez, W. Van Assche, and J. S. Dehesa, Position and momentum information entropies of the D-dimensional harmonic oscillator and hydrogen atom, Phys. Rev. A 50 (1994) 3065, https://doi.org/10.1103/PhysRevA.50.3065

A. Hertz and N. J. Cerf, Continuous-variable entropic uncertainty relations, J. Phys. A: Math. Theor. 52 (2019) 173001, https://doi.org/10.1088/1751-8121/ab03f3

P. J. Coles, M. Berta, M. Tomamichel, and S. Wehner, Entropic uncertainty relations and their applications, Rev. Mod. Phys. 89 (2017) 015002, https://link.aps.org/doi/10.1103/RevModPhys.89.015002

C. E. Shannon, A Mathematical Theory of Communication, Bell Syst. Tech. J. 27 (1948) 379, https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

T. M. Cover and J. A. Thomas, Elements of Information Theory, 1st ed. (John Wiley & Sons, New York, 1991)

A. Rényi, On Measures of Entropy and Information, In Berkeley Symp. on Math. Statist. and Prob., vol. 4.1 (University of California, 1961) pp. 547-561

E. Romera and A. Nagy, Rényi information of atoms, Phys. Lett. A, 372 (2008) 4918, https://doi.org/10.1016/j.physleta.2008.05.029

C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys 52 (1988) 479, https://doi.org/10. 1007/BF01016429

N. Flores-Gallegos, Tsallis entropy as a possible measure of the electron correlation in atomic systems, Chem. Phys. Lett. 692 (2018) 61, https://doi.org/10.1016/j.cplett.2017.12.014

I. Bialynicki-Birula, Formulation of the uncertainty relations in terms of the Rényi entropies, Phys. Rev. A 74 (2006) 052101, https://doi.org/10.1103/PhysRevA.74.052101

Á. Nagy and E. Romera, Relation between Fisher measures of information coming from pair distribution functions, Chem. Phys. Lett. 490 (2010) 242, https://doi.org/10.1016/j.cplett.2010.03.057

J. C. Angulo and J. Antolín, Atomic complexity measures in position and momentum spaces, J. Chem. Phys. 128 (2008) 164109, https://doi.org/10.1063/1.2907743

C. Anteneodo and A. R. Plastino, Some features of the López-Ruiz-Mancini-Calbet (LMC) statistical measure of complexity, Phys. Lett. A 223 (1996) 348, https://doi.org/10.1016/S0375-9601(96)00756-6

E. P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40 (1932) 749, https://link.aps.org/doi/10.1103/PhysRev.40.749

K. Husimi, Some formal properties of the density matrix, Proc. Phys. Math. Soc. Jpn. 22 (1940) 264, https://doi.org/10.11429/ppmsj1919.22.4_264

S. J. C. Salazar, H. G. Laguna and R. P. Sagar, Phasespace quantum distributions and information theory, Phys. Rev. A 107 (2023) 042417, https://doi.org/10.1103/PhysRevA.107.042417

H. G. Laguna and R. P. Sagar, Shannon entropy of the Wigner function and position-momentum correlation in model systems, Int. J. Quantum Inf. 8 (2010) 1089, https://doi.org/10.1142/S0219749910006484

A. Wehrl, On the relation between classical and quantummechanical entropy, Rep. Math. Phys. 16 (1979) 353, https://doi.org/10.1016/0034-4877(79)90070-3

M. Calixto, R. del Real and E. Romera, Husimi distribution and phase-space analysis of a vibron-model quantum phase transition, Phys. Rev. A, 86 (2012) 032508, https://doi.org/10.1103/PhysRevA.86.032508

S. Floerchinger, T. Haas and H. Müller-Groeling, Wehrl entropy, entropic uncertainty relations, and entanglement, Phys. Rev. A 103 (2021) 062222, https://doi.org/10.1103/PhysRevA.103.062222

Á. Nagy, Phase-space Rényi entropy, complexity and thermodynamic picture of density functional theory, J. Math. Chem. 61 (2023) 296, https://doi.org/10.1007/s10910-022-01347-6

R. Leipnik, The extended entropy uncertainty principle, Inf. Control 3 (1960) 18, https://doi.org/10.1016/S0019-9958(60)90227-8

H. G. Laguna and R. P. Sagar, Statistical correlations in the Moshinsky atom, Phys. Rev. A 84 (2011) 012502, https://doi.org/10.1103/PhysRevA.84.012502

H. T. Peng and Y. K. Ho, Statistical correlations of the Nparticle Moshinsky model, Entropy 17 (2015) 1882, https://doi.org/10.3390/e17041882

P.-O. Löwdin, Quantum Theory of Many-Particle Systems. III. Extension of the Hartree-Fock Scheme to Include Degenerate Systems and Correlation Effects, Phys. Rev. 97 (1955) 1509, https://link.aps.org/doi/10.1103/PhysRev.97.1509

P. Schürger and V. Engel, Differential Shannon Entropies and Mutual Information in a Curve Crossing System: Adiabatic and Diabatic Decompositions, J. Chem.Theory Comput. 20 (2024) 5012, https://doi.org/10.1021/acs.jctc.4c00245

P. Schürger and V. Engel, Differential Shannon entropies and correlation measures for Born-Oppenheimer electron-nuclear dynamics: numerical results and their analytical interpretation, Phys. Chem. Chem. Phys. 25 (2023) 28373, https://doi.org/10.1039/D3CP03573E

P. Schürger and V. Engel, On the relation between nodal structures in quantum wave functions and particle correlation, AIP Adv. 13 (2023) 125307, https://doi.org/10.1063/5.0180004

D. Aliverti-Piuri, K. Chatterjee, L. Ding, K. Liao, J. Liebert and C. Schilling, What can quantum information theory offer to quantum chemistry?, Faraday Discuss. 254 (2024) 76, https://doi.org/10.1039/d4fd00059e

C. L. Benavides-Riveros, N. N. Lathiotakis, C. Schilling and M. A. L. Marques, Relating correlation measures: The importance of the energy gap, Phys. Rev. A 95 (2017) 032507, https://link.aps.org/doi/10.1103/PhysRevA.95.032507

J. Dunkel and S. A. Trigger, Time-dependent entropy of simple quantum model systems, Phys. Rev. A 71 (2005) 052102, https://doi.org/10.1103/PhysRevA.71.052102

E. Wigner and F. Seitz, On the constitution of metallic sodium, Phys. Rev. 43 (1933) 804, https://doi.org/10.1103/PhysRev.43.804

W. Kutzelnigg, G. Del Re, and G. Berthier, Correlation Coefficients for Electronic Wave Functions, Phys. Rev. 172 (1968) 49, https://doi.org/10.1103/PhysRev.172.49

A. J. Thakkar and V. H. Smith, Jr., Statistical electron correlation coefficients for the five lowest states of the heliumlike ions, Phys. Rev. A 23 (1981) 473, https://doi.org/10.1103/PhysRevA.23.473

H. G. Laguna and R. P. Sagar, Position-momentum correlations in the Moshinsky atom, J. Phys. A: Math. Theo. 45 (2011) 025307, https://doi.org/10.1088/1751-8113/45/2/025307

P. W. Anderson, More is different, Science 177 (1972) 393, https://doi.org/10.1126/science.177.4047.393

H. Matsuda, Physical nature of higher-order mutual information: Intrinsic correlations and frustration, Phys. Rev. E 62 (2000) 3096, https://doi.org/10.1103/PhysRevE.62.3096

S. J. C. Salazar, H. G. Laguna and R. P. Sagar, Higher order statistical correlations in three particle quantum systems with harmonic interactions, Phys. Rev. A. 101 (2020) 042105, https://doi.org/10.1103/PHYSREVA.101.042105

S. J. C. Salazar, H. G. Laguna and R. P. Sagar, Mutual information sums and relations with interaction energies in N-particle quantum systems, Phys. Rev. E 110 (2024) 034133, https://doi.org/10.1103/PhysRevE.110.034133

Ch. C. Moustakidis, K. Ch. Chatzisavvas, and C. P. Panos, Theoretical quantum-information properties of nuclei and trapped Bose gases, Int. J. Mod. Phys. E 14 (2005) 1087, https://doi.org/10.1142/S0218301305003739

T. Sriraman, B. Chakrabarti, A. Trombettoni, and P. Muruganandam, Characteristic features of the Shannon information entropy of dipolar Bose-Einstein condensates, J. Chem. Phys. 147 (2017) 044304, https://doi.org/10.1063/1.4994922

Q. Zhao and J. Zhao, Optical lattice effects on Shannon information entropy in rotating Bose-Einstein condensates, J. Low Temp. Phys. 194 (2019) 302, https://doi.org/10.1007/s10909-018-2099-5

B. Chakrabarti, A. Gammal, N. D. Chavda, M.L. Lekala, Quantum-information-theoretical measures to distinguish fermionized bosons from noninteracting fermions, Phys. Rev. A 109 (2024) 063308, https://link.aps.org/doi/10.1103/PhysRevA.109.063308

E. Romera and F. de los Santos, Identifying Wave-Packet Fractional Revivals by Means of Information Entropy, Phys. Rev. Lett. 99 (2007) 263601, https://doi.org/10.1103/PhysRevLett.99.263601

N. Flores-Gallegos and L. Flores-Gómez, An approach to chemical hardness through Shannon’s entropy, J. Math. Chem 61 (2023) 1726, https://doi.org/10.1007/s10910-023-01488-2

Z. Wu, C. Rong, T. Lu, P. W. Ayers and S. Liu, Density functional reactivity theory study of SN 2 reactions from the information-theoretic perspective, Phys. Chem. Chem. Phys. 17 (2015) 27052, https://doi.org/10.1039/C5CP04442A

X. He, M. Li, C. Rong, D. Zhao, W. Liu, P. W. Ayers and S. Liu, Some Recent Advances in Density-Based Reactivity Theory, J. Phys. Chem. A 128 (2024) 1183, https://doi.org/10.1021/acs.jpca.3c07997

C. P. Panos and Ch. C. Moustakidis, A simple link of information entropy of quantum systems with Newtonian r -2 dependence of Verlinde entropic force, Physica A: Stat. Mech. Appl. 518 (2019) 384, https://doi.org/10.1016/j.physa.2018.12.018

K. D. Sen, Characteristic features of Shannon information entropy of confined atoms, J. Chem. Phys. 123 (2005) 074110, https://doi.org/10.1063/1.2008212

W. S. Nascimento and F. V. Prudente, Shannon entropy: A study of confined hydrogenic-like atoms, Chem. Phys. Lett. 691 (2018) 401, https://doi.org/10.1016/j.cplett. 2017.11.048

N. Mukherjee and A. K. Roy, Information-entropic measures in free and confined hydrogen atom, Int. J. Quantum Chem. 118 (2018) e25596, https://doi.org/10.1002/qua.25596

G. H. Sun, S. H. Dong and N. Saad, Quantum information entropies for an asymmetric trigonometric Rosen-Morse potential, Ann. Phys. 525 (2013) 934, https://doi.org/10.1002/andp.201300089

X. D. Song, G. H. Sun and S. H. Dong, Shannon information entropy for an infinite circular well, Phys. Lett. A 379 (2015) 1402, https://doi.org/10.1016/j.physleta.2015.03.020

L. G. Jiao, L. R. Zan, Y. Z. Zhang, and Y. K. Ho, Benchmark values of Shannon entropy for spherically confined hydrogen atom, Int. J. Quantum Chem. 117 (2017) e25375, https://doi.org/10.1002/qua.25375

M. A. Martínez-Sánchez, R. Vargas, and J. Garza, Shannon entropy for the hydrogen atom confined by four different potentials, Quantum Rep. 1 (2019) 208, https://doi.org/10.3390/quantum1020018

E. Cruz, N. Aquino and V. Prasad, Localization-delocalization of a particle in a quantum corral in presence of a constant magnetic field, Eur. Phys. J. D 75 (2021) 106, https://doi.org/10.1140/epjd/s10053-021-00119-2

W. S. Nascimento, M. M. de Almeida and F. V. Prudente, Coulomb correlation and information entropies in confined helium-like atoms, Eur. Phys. J. D 75 (2021) 171, https://doi.org/10.1140/epjd/s10053-021-00177-6

S. Majumdar, N. Mukherjee and A. K. Roy, Confined H ion within a density functional framework, Eur. Phys. J. D 75 (2021) 86, https://doi.org/10.1140/epjd/s10053-021-00077-9

S. Mondal, K. Sen and J. K. Saha, He atom in a quantum dot: Structural, entanglement, and information-theoretical measures, Phys. Rev. A 105 (2022) 032821 https://doi.org/10.1103/PhysRevA.105.032821

K. Kumar and V. Prasad, Control of correlation using confinement in case of quantum system, Ann. Phys. 535 (2023) 2300166, https://doi.org/10.1002/andp.202300166

C. R. Estañón, H. E. Montgomery Jr., J. C. Angulo, and N. Aquino, The confined helium atom: An information-theoretic approach, Int. J. Quantum Chem. 124 (2024) e27358, https://doi.org/10.1002/qua.27358

K. D. Chakladar, S. Mondal, K. D. Sen and J. K. Saha, Quantum-information-theoretic analysis of Zee systems under pressure confinement, Phys. Rev. A 110 (2024) 042819, https://link.aps.org/doi/10.1103/PhysRevA.110.042819

R. P. Sagar, H. G. Laguna and N. L. Guevara, Electron pair density information measures in atomic systems, Int. J. Quantum Chem. 111 (2011) 3497, https://doi.org/10.1002/qua.22792

S. López-Rosa, A. L. Martín, J. Antolín, and J. C. Angulo, Electron-pair entropic and complexity measures in atomic systems, Int. J. Quantum Chem. 119 (2019) e25861, https://doi.org/10.1002/qua.25861

J. C. Angulo and S. López-Rosa, Mutual information in conjugate spaces for neutral atoms and ions, Entropy 24 (2022) 233, https://doi.org/10.3390/e24020233

V. Majerník and T. Opatrny, Entropic uncertainty relations for a quantum oscillator, J. Phys. A: Math. Gen. 29 (1996) 2187, https://doi.org/10.1088/0305-4470/29/9/029

P. Garbaczewski, Differential entropy and time, Entropy 7 (2005) 253 , https://doi.org/10.3390/e7040253

Downloads

Published

2025-04-30

How to Cite

1.
Sagar R. Uncertainties and statistical correlations in quantum systems. Supl. Rev. Mex. Fis. [Internet]. 2025 Apr. 30 [cited 2025 Jul. 1];6(1):011303 1-9. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/7999