On the numerical integration of two-particle functions for pair entropies of diatomic molecules
DOI:
https://doi.org/10.31349/SuplRevMexFis.6.011306Keywords:
Information theory, Informational entropy, Pair entropy, Numerical integration, Diatomic molecule, Theoretical chemistryAbstract
In order to compute two-electron informational entropies of atoms or molecules, highly-accurate numerical integration methods are needed. In this contribution, we describe the details of a numerical algorithm specific for diatomic molecules, originally designed to numerically integrate 3D functions. The algorithm is adapted to integrate functions of two particles, i.e., to integrate functions in domains of the form Ω × Ω, where Ω ∈ R3 . The diatomic integration scheme is a cubature rule that combines Gauss-Legendre quadratures for the radial and angular parts, and the domain Ω is split into two semi-spheres, each with its own local center of coordinates. In addition, we compare the performance of the diatomic integration scheme vs. a Monte Carlo integrator, both for the 3D and 6D cases.
References
C. E. Shannon, A Mathematical Theory of Communication, The Bell System Technical Journal 27 (1948) 379
M. Hô, et al., A numerical study of molecular information entropies, Chemical Physics Letters 219 (1994) 15, https://doi.org/10.1016/0009-2614(94)00029-8
H. G. Laguna, S. J. C. Salazar, and R. P. Sagar, Information theoretical statistical discrimination measures for electronic densities, Journal of Mathematical Chemistry 60 (2022) 1422, https://doi.org/10.1007/s10910-022-01363-6
S. R. Gadre, et al., Some novel characteristics of atomic information entropies, Phys. Rev. A 32 (1985) 2602, https://doi.org/10.1103/PhysRevA.32.2602
S. Noorizadeh and E. Shakerzadeh, Shannon entropy as a new measure of aromaticity, Shannon aromaticity, Phys. Chem. Chem. Phys. 12 (2010) 4742, https://doi.org/10.1039/B916509F
D. S. Sabirov and I. S. Shepelevich, Information Entropy in Chemistry: An Overview, Entropy 23 (2021), https://doi.org/10.3390/e23101240
S. J. C. Salazar-Samaniego, Correlaciones estadísticas de órdenes altos en sistemas cuánticos de tres partículas, Phd thesis, Universidad Autónoma Metropolitana, CDMX (2022)
N. L. Guevara, R. P. Sagar, and R. O. Esquivel, Information uncertainty-type inequalities in atomic systems, The Journal of Chemical Physics 119 (2003) 7030, https://doi.org/10.1063/1.1605932
R. P. Sagar, H. G. Laguna, and N. L. Guevara, Electron pair density information measures in atomic systems, International Journal of Quantum Chemistry 111 (2011) 3497, https://doi.org/10.1002/qua.22792
S. López-Rosa, et al., Electron-pair entropic and complexity measures in atomic systems, International Journal of Quantum Chemistry 119 (2019) e25861, https://doi.org/10.1002/qua.25861
F. J. Torres, et al., A review on the information content of the pair density as a tool for the description of the electronic properties in molecular systems, International Journal of Quantum Chemistry 119 (2019) e25763, https://doi.org/10.1002/qua.25763
J. M. Solano-Altamirano, et al., DensToolKit2: A comprehensive open-source package for analyzing the electron density and its derivative scalar and vector fields, The Journal of Chemical Physics 161 (2024) 232501, https://doi.org/10.1063/5.0239835
M. J. Frisch, et al., Gaussian 09 Revision D.01, Gaussian Inc. Wallingford CT 2009.
F. Neese, Software update: the ORCA program system, version 4.0, WIREs Computational Molecular Science 8 (2018) e1327, https://doi.org/10.1002/wcms.1327
M. Valiev, et al., NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations, Comput. Phys. Commun. 181 (2010) 1477 , http://dx.doi.org/10.1016/j.cpc.2010.04.018
M.W.Schmidt, et al., The GAMESS program, J. Comput. Chem. 14 (1993) 1347
R. G. Parr and W. Yang, Density-functional theory of atoms and molecules (Oxford University Press, 1989).
J. Andrés and J. Beltrán (Eds.), Química teórica y computacional (Publicacions de la Universitat Jaume I, 2000), Ch. 2.
T. Lu and F. Chen, Multiwfn: A multifunctional wavefunction analyzer, Journal of Computational Chemistry 33 (2012) 580, https://doi.org/10.1002/jcc.22885
G. Hermann, et al., ORBKIT: A modular python toolbox for cross-platform postprocessing of quantum chemical wavefunction data, Journal of Computational Chemistry 37 (2016) 1511, https://doi.org/10.1002/jcc.24358
A. O. de-la Roza, E. R. Johnson, and V. L. na, Critic2: A program for real-space analysis of quantum chemical interactions in solids, Computer Physics Communications 185 (2014) 1007, https://doi.org/10.1016/j.cpc.2013.10.026
W. Press, et al., Numerical Recipes, The Art of Scientific Computing (1989)
C. An and Y. Xiao, Numerical construction of spherical t-designs by Barzilai-Borwein method, Applied Numerical Mathematics 150 (2020) 295, https://doi.org/10.1016/j.apnum.2019.10.008
A. D. Becke, A multicenter numerical integration scheme for polyatomic molecules, The Journal of Chemical Physics 88 (1988) 2547, https://doi.org/10.1063/1.454033
J. M. Pérez-Jordá, A. D. Becke, and E. San-Fabián, Automatic numerical integration techniques for polyatomic molecules, The Journal of Chemical Physics 100 (1994) 6520, https://doi.org/10.1063/1.467061
J. Solano-Altamirano and S. Goldman, Thermodynamic stability in elastic systems: Hard spheres embedded in a finite spherical elastic solid, European Physical Journal E 38 (2015) 1 , http://doi.org/10.1140/epje/i2015-15133-1
W. Zou and C. Gao, Molden2AIM, https://github.com/zorkzou/Molden2AIM(2015).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 J. M. Solano-Altamirano

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Suplemento de la Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.