Towards entropic uncertainty relations for non-regular Hilbert spaces
DOI:
https://doi.org/10.31349/SuplRevMexFis.6.011308Keywords:
Entropic Uncertainty Relations, Polymer Quantum Mechanics, Singular RepresentationsAbstract
The Entropic Uncertainty Relations (EUR) result from inequalities that are intrinsic to the Hilbert space and its dual with no direct connection to the Canonical Commutation Relations. Bialynicky-Mielcisnky obtained them in [1] attending Hilbert spaces with a Lebesgue measure. The analysis of these EUR in the context of singular Hilbert spaces has not been addressed. Singular Hilbert spaces are widely used in scenarios where some discretization of the space (or spacetime) is considered, e.g., loop quantum gravity, loop quantum cosmology and polymer quantum mechanics. In this work, we present an overview of the essential literature background and the road map we plan to follow to obtain the EUR in polymer quantum mechanics.
References
I. Białynicki-Birula and J. Mycielski, Uncertainty relations for information entropy in wave mechanics, Communications in Mathematical Physics 44 (1975) 129
C. E. Shannon, A mathematical theory of communication, The Bell system technical journal 27 (1948) 379
T. M. Cover, Elements of information theory (John Wiley & Sons, 1999).
K. D. Sen, Statistical complexity: applications in electronic structure (Springer Science & Business Media, 2011).
E. T. Jaynes, Information theory and statistical mechanics, Physical review 106 (1957) 620
E. T. Jaynes, Information theory and statistical mechanics. II, Physical review 108 (1957) 171
. Ford, BRANDÉIS UNIVERSITY SUMMER INSTITUTE LECTURES IN THEORETICAL PIIïSICS
R. O. Esquivel et al., Information-Theoretic Concepts to Elu- cidate Local and Non-Local Aspects of Chemical Phenomena, Journal of the Mexican Chemical Society 69 (2025) 293
D. Deutsch, Uncertainty in quantum measurements, Physical Review Letters 50 (1983) 631
I. I. Hirschman, A note on entropy, American journal of math- ematics 79 (1957) 152
P.J.Coles,etal.,Entropicuncertaintyrelationsandtheirappli- cations, Reviews of Modern Physics 89 (2017) 015002
J. Rosenberg, A selective history of the Stone-von Neumann theorem, Contemporary Mathematics 365 (2004) 331
A. Corichi, T. Vukašinac, and J. A. Zapata, Polymer quantum mechanics and its continuum limit, Physical Review DParti- cles, Fields, Gravitation, and Cosmology 76 (2007) 044016
C. Rovelli, Loop quantum gravity, Living reviews in relativity 11 (2008) 1
A. Ashtekar and P. Singh, Loop quantum cosmology: a status report, Classical and Quantum Gravity 28 (2011) 213001
A. Corichi, T. Vukašinac, and J. A. Zapata, Hamiltonian and physical Hilbert space in polymer quantum mechanics, Classi- cal and Quantum Gravity 24 (2007) 1495
S. L. Braunstein, C. M. Caves, and G. J. Milburn, Generalized uncertainty relations: theory, examples, and Lorentz invariance, annals of physics 247 (1996) 135
A. Ashtekar and R. S. Tate, An algebraic extension of Dirac quantization: Examples, Journal of Mathematical Physics 35 (1994) 6434
A. Corichi, J. Cortez, and H. Quevedo, Schrödinger and Fock representation for a field theory on curved spacetime, Annals of Physics 313 (2004) 446
K. I. Babenko, An inequality in the theory of Fourier integrals, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 25 (1961) 531
W. Beckner, Inequalities in Fourier analysis on Rn, Proceed- ings of the National Academy of Sciences 72 (1975) 638
R. M. Wald, Quantum field theory in curved spacetime and black hole thermodynamics (University of Chicago press, 1994).
A. Ashtekar and A. Magnon, Quantum fields in curved space- times, Proceedings of the Royal Society of London. A. Mathe- matical and Physical Sciences 346 (1975) 375
A. Corichi, J. Cortez, and H. Quevedo, Schrödinger represen- tation for a scalar field on curved spacetime, Physical Review D 66 (2002) 085025
J. Velhinho, The quantum configuration space of loop quantum cosmology, Classical and Quantum Gravity 24 (2007) 3745
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 A. Corichi, A. Garcia-Chung, F. Zadra

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Suplemento de la Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.