Quantum information chemistry: Exploring non-local entanglement phenomena
DOI:
https://doi.org/10.31349/SuplRevMexFis.6.011313Keywords:
Quantum Information Theory; Quantum ChemistryAbstract
This study explores the non-local phenomena arising from quantum entanglement (often referred to as non-locality). It investigates these phenomena through fundamental concepts of quantum information theory (QIT), particularly those involving quantum state superposition. The emergence of non-locality is discussed in connection with electron correlation from a chemical viewpoint, emphasizing both historical context and scientific significance. This phenomenon is analyzed using selected atomic and molecular test cases, providing insights into fundamental aspects of chemical systems and the processes they undergo. Ultimately, this work advances the emerging discipline of Quantum Information Chemistry (QIChem).
References
M. Keyl, Fundamentals of quantum information theory. Phys. Rep. 369 (2002) 431, https://doi.org/10.1016/S0370-1573(02)00266-1
M. R. Wasielewski et al., Exploiting chemistry and molecular systems for quantum information science. Nat. Rev. Chem. 4 (2020) 490, https://doi.org/10.1038/s41570-020-0200-5
B. Bauer, S. Bravyi, M. Motta and G. K.-L. Chan, Quantum algorithms for quantum chemistry and quantum materials science. Chem. Rev. 120 (2020) 12685, https://doi.org/10.1021/acs.chemrev.9b00829
C. J. K. Richardson, V. Lordi, S. Misra and J. Shabani, Materials science for quantum information science and technology. MRS Bull. 45 (2020) 485, https://doi.org/10.1557/mrs.2020.147
Y. Cao, et al., A. Quantum chemistry in the age of quantum computing. Chem. Rev. 119 (2019) 10856, https://doi.org/10.1021/acs.chemrev.8b00803
K. R. Mullin, D. Johnson, D. E. Freedman, and J. M. Rondinelli, System-Chart approach to the design of spin relaxation times in molecular qubits. Dalton Trans. 53 (2024) 16585, https://doi.org/10.1039/D4DT02311K
S. Kuppusamy, D. Hunger, M. Ruben, P. Goldner, and D. Serrano, Spin-bearing molecules as optically addressable platforms for quantum technologies. Nanophotonics 13 (2024) 4357, https://doi.org/10.1515/nanoph-2024-0420
G. D. Scholes et al., The quantum information science challenge for chemistry. J. Phys. Chem. Lett. 16 (2025) 1376, https://doi.org/10.1021/acs.jpclett.4c02955
M. Löw, M. Ibrügger, G. Rempe, and M. Zeppenfeld, Coherence of symmetry-protected rotational qubits in cold polyatomic molecules. Phys. Rev. Lett. 134 (2025) 113402. https://doi.org/10.1103/PhysRevLett.134.113402
J. D. Weidman et al., Quantum computing and chemistry. Cell Rep. Phys. Sci. 5 (2024) 102105. https://doi.org/10.1016/j.xcrp.2024.102105
Y. Ding, C. Wang, M. Zeng, L. Fu, Atomic manufacturing of advanced nanomaterials. Adv. Mater. 35 (2023) 2306689. https://doi.org/10.1002/adma.202306689
A. Aspuru-Guzik, R. Lindh, M. Reiher, The matter simulation (r)evolution. ACS Cent. Sci. 4 (2018) 144, https://doi.org/10.1021/acscentsci.7b00550
J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2 (2018) 79, https://doi.org/10.22331/q-2018-08-06-79
H. Ma, J. Liu, H. Shang, Y. Fan, Z. Li, and J. Yang, Multiscale quantum algorithms for quantum chemistry. Chem. Sci. 14 (2023) 3190, https://doi.org/10.1039/d2sc06875c
A. Aspuru-Guzik et al., Simulated Quantum Computation of Molecular Energies. Science 309 (2005) 1704, https://doi.org/10.1126/science.1113479
A. Szabó and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, (Dover, New York, 1996)
I. Shavitt, and R. J. Bartlett, Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory, (Cambridge University Press, Cambridge, U.K., 2009) https://doi.org/10.1017/CBO9780511596834
C. Møller and M. S. Plesset, Note on an approximation treatment for many-electron systems. Phys. Rev. 46 (1934) 618, https://doi.org/10.1103/PhysRev.46.618
D. Cremer, Møller-Plesset perturbation theory: from small molecule methods to methods for thousands of atoms. WIREs Comput. Mol. Sci. 1 (2011) 509, https://doi.org/10.1002/wcms.58
J. Čížek, On the correlation problem in atomic and molecular systems. Calculation of wavefunction components in Urselltype expansion using quantum-field theoretical methods. J. Chem. Phys. 45 (1966) 4256, https://doi.org/10.1063/1.1727484
A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98 (1993) 5648, https://doi.org/10.1063/1.464913
B. O. Roos, P. R. Taylor, and P. E. M. Siegbahn, A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem. Phys. 48 (1980) 157, https://doi.org/10.1016/0301-0104(80)80045-0
G. K.-L. Chan, S. Sharma, The density matrix renormalization group in quantum chemistry. Annu. Rev. Phys. Chem. 62 (2011) 465, https://doi.org/10.1146/annurev-physchem-032210-103338
S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X. Yuan, Quantum computational chemistry. Rev. Mod. Phys. 92 (2020) 015003. https://doi.org/10.1103/RevModPhys.92.015003
W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43 (1927) 172, https://doi.org/10.1007/BF01397280
A. Messiah, Quantum Mechanics, Vols. I & II; (NorthHolland: Amsterdam, 1962). https://doi.org/10.1119/1.1937749
P. A. M. Dirac, On the theory of quantum mechanics. Proc. R. Soc. Lond. A 112 (1926) 661, https://doi.org/10.1098/rspa.1926.0133
W. Pauli, Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren. Z. Phys. 31 (1925) 765, https://doi.org/10.1007/BF02980631
J. S. Bell, On the Einstein Podolsky Rosen paradox. Physics Physique Fizika 1 (1964) 195, https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
A. Einstein, B. Podolsky, and N. Rosen, Can quantummechanical description of physical reality be considered complete? Phys. Rev. 47 (1935) 777, https://doi.org/10.1103/PhysRev.47.777
D. M. Collins, Z. Naturforsch. A. 48 (1993) 68
R. O. Esquivel, Phys. Rev. A 56 (1997) 4477, https://doi.org/10.1103/PhysRevA.56.4477
J. S. Dehesa, T. Koga, R. J. Yáñez, A. R. Plastino, and R. O. Esquivel, Quantum entanglement in helium, J. Phys. B: At. Mol. Opt. Phys. 45 (2012) 015504. https://doi.org/10.1088/0953-4075/45/1/015504
J. S. Dehesa, T. Koga, R. J. Yáñez, A. R. Plastino, and R. O. Esquivel, Corrigendum: Quantum entanglement in helium, J. Phys. B: At. Mol. Opt. Phys. 45 (2012) 239501. https://doi.org/10.1088/0953-4075/45/23/239501
S. López-Rosa et al., Quantum entanglement of helium-like systems with varying-Z: compact state-of-the-art CI wave functions, J. Phys. B: At. Mol. Opt. Phys. 48 (2015) 175002. https://doi.org/10.1088/0953-4075/48/17/175002
R. O. Esquivel, S. López-Rosa, J. S. Dehesa, Correlation energy as a measure of non-locality: Quantum entanglement of helium-like systems, Europhys. Lett. 111 (2015) 40009. https://doi.org/10.1209/0295-5075/111/40009
R. O. Esquivel et al., Quantum entanglement and the dissociation process of diatomic molecules, J. Phys. B: At. Mol. Opt. Phys. 44 (2011) 175101. https://doi.org/10.1088/0953-4075/44/17/175101
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 R. O. Esquivel

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Suplemento de la Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.