The one-dimensional harmonic oscillator damped with Caldirola-Kanai Hamiltonian
DOI:
https://doi.org/10.31349/RevMexFisE.64.47Keywords:
Hamilton-Jacobi equations, Caldirola-Kanai Hamiltonian, damped harmonic oscillatorAbstract
In this paper, the solution to the Hamilton-Jacobi equation for the one-dimensional harmonic oscillator damped with the Caldirola-Kanai model is presented. Making use of a canonical transformation, we calculate the Hamilton characteristic function. It was found that the position of the oscillator shows an exponential decay similar to that of the oscillator with damping where the decay is more pronounced when increasing the damping constant γ. It is shown that when γ = 0, the behavior is of an oscillator with simple harmonic motion. However, unlike the damped harmonic oscillator where the linear momentum decays with time, in the case of the oscillator with the Caldirola-KanaiHamiltonian, the momentum increases as time increases due to an exponential growth of the mass m(t) = meγt.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Francis Segovia-Chaves
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física E right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.