An algebraic approach to a charged particle in a uniform magnetic field
DOI:
https://doi.org/10.31349/RevMexFisE.64.127Keywords:
Coherent states, group theory, Landau levels.Abstract
We study the problem of a charged particle in a uniform magnetic field with two different gauges, known as Landau and symmetric gauges. By using a similarity transformation in terms of the displacement operator we show that, for the Landau gauge, the eigenfunctions for this problem are the harmonic oscillator number coherent states. In the symmetric gauge, we calculate the SU(1; 1) Perelomov number coherent states for this problem in cylindrical coordinates in a closed form. Finally, we show that these Perelomov number coherent states are related to the harmonic oscillator number coherent states by the contraction of the SU(1; 1) group to the Heisenberg-Weyl group.Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the Revista Mexicana de Física E right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.