Exact solutions for electromagnetic fields inside and outside a spherical surface with magnetic/electric dipole distributed sources
DOI:
https://doi.org/10.31349/RevMexFisE.64.139Keywords:
Time alternating electric and magnetic dipole sources, potentials and force fields, inner and outer exact solutions, Helmholtz equation, boundary condition forms of Maxwell equations, outgoing-wave Green function multipole expansion.Abstract
Exact solutions of the Maxwell equations for the electromagnetic fields inside and outside a spherical surface, with time alternating magnetic or electric dipole source distributions, are constructed as alternatives to the respective familiar point-dipole solutions in undergraduate and graduate books. These solutions are valid for all positions, inside and outside the sphere, including the quasi-static, induction and radiation zones; the solutions inside make the difference from the point-dipole solutions; the definitions of the dynamic dipole moments must be based on the ordinary spherical Bessel functions for the solutions outside, and on the outgoing spherical Hankel functions for the solutions inside,instead of the powers of the radial coordinate as solutions of the Laplace equation valid for the static case. The solutions for the resonating cavities are associated with the nodes of the spherical Bessel function for the TE modes of the magnetic dipole source, and with the extremes of the product of the radial coordinate times the same spherical function for the TM modes of the electric dipole source; both conditions also guarantee the vanishing of the fields outside.
Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the Revista Mexicana de Física E right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.