Spectral generalized function method for solving homogeneous partial differential equations with constant coefficients
DOI:
https://doi.org/10.31349/RevMexFisE.17.11Keywords:
Differential equations, Fourier transform, generalization of d’Alambert solutionAbstract
A method based on a generalized function in Fourier space gives analytical solutions to homogeneous partial differential equations with constant coefficients of any order in any number of dimensions. The method exploits well-known properties of the Dirac delta, reducing the differential mathematical problem into the factorization of an algebraic expression that finally has to be integrated. In particular, the method was utilized to solve the most general homogeneous second order partial differential equation in Cartesian coordinates, finding a general solution for non-parabolic partial differential equations, which can be seen as a generalization of d'Alambert solution. We found that the traditional classification, i.e., parabolic, hyperbolic and elliptic, is not necessary reducing the classification to only parabolic and non-parabolic cases. We put special attention for parabolic partial differential equations, analyzing the general 1D homogeneous solution of the Photoacoustic and Photothermal equations in the frequency and time domain. Finally, we also used the method to solve Helmholtz equation in cylindrical coordinates, showing that it can be used in other coordinates systems.Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 David Cywiak-Códova, Gerardo Gutiérrez-Juárez, Moisés Cywiak-Garbarcewicz
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física E right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.