Two-dimensional harmonic and Green's functions on a spherical surface
Keywords:
Laplace-Beltrami, Poisson-Beltrami operators, equations, two-dimensional spherical harmonics, Green's functions, separability, integrabilityAbstract
The solutions of the Laplace-Beltrami equation on a spherical surface are constructed by the method of separation of variables, as the products of the Fourier basis functions of the azimuthal angle and the integer powers of tangent or cotangent functions of half the polar angle. The Legendre operator acting on the latter functions yields zero. The construction of the Green's function as the solution of the corresponding Poisson-Beltrami equation with a unit point source on the spherical surface is also constructed using the two-dimensional spherical harmonic basis.Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Revista Mexicana de Física E
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física E right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.