Quantum-mechanical aspects of magnetic resonance imaging
Keywords:
Magnetic resonance, magnetic field, spin, magnetization, voxelAbstract
The Magnetic Resonance Imaging (MRI) is a non-invasive technique which uses the physical phenomenon of nuclear magnetic resonance to obtain structural and compositional information about human body regions. In this imaging study we use the radio-frequency and a powerful static magnetic field, which aligns the magnetization of hydrogen nuclei. Nowadays there are many types of clinical equipment that conduct MRI studies, which have intensities of magnetic fields from 0.2T to 7.0T. Moreover, liquid helium is required for the superconducting coil. This paper presents an analysis of the magnetic resonance phenomenon; by doing a review of the quantum-mechanical aspects as the spin and Zeeman effect.Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Revista Mexicana de Física E
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física E right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.