Estabilidad y control de sistemas mecánicos de base móvil
DOI:
https://doi.org/10.31349/RevMexFisE.18.69Keywords:
Enseñanza, Ecuación de Lagrange, Sistemas Dinámicos, Simulación.Abstract
En este trabajo se estudia la estabilidad de un péndulo invertido de dos grados de libertad y de base móvil,el cual se modeló mediante la formulación Euler-Lagrange. Este modelo permitió diseñar e implementaruna estrategia de control para el seguimiento de trayectorias articulares de referencia. Los sistemas mecánicos de bases fijas y móviles permiten ilustrar un concepto fundamental en las ciencias físicas, que es la diferencia entre limitaciones tecnológicas y limitaciones fundamentales.References
D. A. Bravo and C. F. Rengifo, “Generation
from motion capture for a planar biped robot
in swing phase,” Ingeniería y Ciencia, vol. 11,
no. 22, pp. 25–47, Aug. 2015. [Online]. Available:
https://doi.org/10.17230/ingciencia.11.22.2
J. Tacué, C. Rengifo, and D. Bravo, “An
experimental energy consumption comparison
between trajectories generated by using the
cart-table model and an optimization approach
for the bioloid robot,” International Journal
of Advanced Robotic Systems, vol. 17,
no. 2, pp. 1–14, 2020. [Online]. Available:
https://doi.org/10.1177/1729881420917808
D. A. Bravo and C. F. Rengifo, “Estudio
de la dinámica y control de una bicicleta
robótica,” Revista Mexicana de Física, vol. 17,
no. 1, pp. 62–68, Jan. 2020. [Online]. Available:
https://doi.org/10.31349/RevMexFisE.17.62
J. Akesson, A. Blomdell, and R. Braun, “Design
and control of yaip - an inverted pendulum on
two wheels robot,” in 2006 IEEE Conference on
Computer Aided Control System Design, 2006
IEEE International Conference on Control Applications,
IEEE International Symposium
on Intelligent Control, Oct 2006, pp. 2178–2183.
G. V. Raffo, M. G. Ortega, V. Madero, and
F. R. Rubio, “Two-wheeled self-balanced pendulum
workspace improvement via underactuated
robust nonlinear control,” Control Engineering
Practice, vol. 44, pp. 231 – 242, 2015.
C. Chevallereau and Y. Aoustin, “Optimal reference
trajectories for walking and running of a
biped robot,” Robotica, vol. 19, pp. 557 – 569,
D. Tlalolini, C. Chevallereau, and Y. Aoustin,
“Human-like walking: Optimal motion of
a bipedal robot with toe-rotation motion,”
IEEE/ASME Transactions on Mechatronics,
vol. 16, no. 2, pp. 310 – 320, April 2010.
C. Chevallereau, “Time-scaling control for an underactuated
biped robot,” IEEE Transactions,
vol. 19, no. 2, pp. 362 – 368, 2003.
J. Edelmann, M. Haudum, and M. Plochl, “Bicycle
rider control modelling for path tracking,”
IFAC-PapersOnLine, vol. 48, no. 1, pp. 55 –
, 2015, 8th Vienna International Conferenceon
Mathematical Modelling.
L. Consolini and M. Maggiore, “Control of a
bicycle using virtual holonomic constraints,” Automatica,
vol. 49, no. 9, pp. 2831 – 2839, 2013.
J. Mauny, M. Porez, and F. Boyer, “Symbolic dynamic
modelling of locomotion systems with persistent
contacts - application to the 3d bicycle,”
IFAC-PapersOnLine, vol. 50, no. 1, pp. 7598 –
, 2017, 20th IFAC World Congress.
N. B. Hung, J. Sung, and O. Lim, “A simulation
and experimental study of operating performance
of an electric bicycle integrated with
a semi-automatic transmission,” Applied Energy,
vol. 221, pp. 319 – 333, 2018.
[D. A. Bravo M., C. F. Rengifo R., and J. F. Díaz
O., “Control of a robotic bicycle,” in 2018 IEEE
nd Colombian Conference on Robotics and Automation
(CCRA), Nov 2018, pp. 1–5.
D. A. Bravo, C. F. Rengifo, and J. F. Díaz,
“Comparative analysis between computed torque
control, lqr control and pid control for a robotic
bicycle,” in 2019 IEEE 4th Colombian Conference
on Automatic Control (CCAC), 2019, pp.
–6.
D. A. Bravo, C. F. Rengifo, and W. Acuña., “Dynamics
and preview control of a robotics bicycle,”
in Advances in Automation and Robotics
Research. Springer International Publishing,
, pp. 248–257.
D. A. Bravo and C. F. Rengifo, “Herramienta
para la enseñanza de las ecuaciones de Lagrange
basada en la simulacion de sistemas dinámicos,”
Revista Mexicana de Física, vol. 60, no. 2, pp.
–115, 2014.
W. Khalil and E. Dombre, Modeling, Identification
and Control of Robots, 3rd ed. USA: Taylor
& Francis, Inc., 2002.
M. Vukobratovic, “Zero-moment point. thirty five
years of its life,” International Journal of Humanoid
Robotics, vol. 01, no. 01, pp. 157–173,
C. D. Boor, A Practical Guide to Splines. Springer,
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Diego Alberto Bravo Montenegro, Carlos Felipe Rengifo Rodas
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física E right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.