Estabilidad y control de sistemas mecánicos de base móvil

Authors

  • D. A. Bravo M. Universidad del Cauca, Colombia
  • C. F. Rengifo R. Universidad del Cauca

DOI:

https://doi.org/10.31349/RevMexFisE.18.69

Keywords:

Enseñanza, Ecuación de Lagrange, Sistemas Dinámicos, Simulación.

Abstract

En este trabajo se estudia la estabilidad de un péndulo invertido de dos grados de libertad y de base móvil,el cual se modeló mediante la formulación Euler-Lagrange. Este modelo permitió diseñar e implementaruna estrategia de control para el seguimiento de trayectorias articulares de referencia. Los sistemas mecánicos de bases fijas y móviles permiten ilustrar un concepto fundamental en las ciencias físicas, que es la diferencia entre limitaciones tecnológicas y limitaciones fundamentales.

Author Biographies

D. A. Bravo M., Universidad del Cauca, Colombia

Departamento de Física. Profesor Titular

C. F. Rengifo R., Universidad del Cauca

Deparatamento de Electrónica, Instrumentación y Control, Profesor Titular

References

D. A. Bravo and C. F. Rengifo, “Generation

from motion capture for a planar biped robot

in swing phase,” Ingeniería y Ciencia, vol. 11,

no. 22, pp. 25–47, Aug. 2015. [Online]. Available:

https://doi.org/10.17230/ingciencia.11.22.2

J. Tacué, C. Rengifo, and D. Bravo, “An

experimental energy consumption comparison

between trajectories generated by using the

cart-table model and an optimization approach

for the bioloid robot,” International Journal

of Advanced Robotic Systems, vol. 17,

no. 2, pp. 1–14, 2020. [Online]. Available:

https://doi.org/10.1177/1729881420917808

D. A. Bravo and C. F. Rengifo, “Estudio

de la dinámica y control de una bicicleta

robótica,” Revista Mexicana de Física, vol. 17,

no. 1, pp. 62–68, Jan. 2020. [Online]. Available:

https://doi.org/10.31349/RevMexFisE.17.62

J. Akesson, A. Blomdell, and R. Braun, “Design

and control of yaip - an inverted pendulum on

two wheels robot,” in 2006 IEEE Conference on

Computer Aided Control System Design, 2006

IEEE International Conference on Control Applications,

IEEE International Symposium

on Intelligent Control, Oct 2006, pp. 2178–2183.

G. V. Raffo, M. G. Ortega, V. Madero, and

F. R. Rubio, “Two-wheeled self-balanced pendulum

workspace improvement via underactuated

robust nonlinear control,” Control Engineering

Practice, vol. 44, pp. 231 – 242, 2015.

C. Chevallereau and Y. Aoustin, “Optimal reference

trajectories for walking and running of a

biped robot,” Robotica, vol. 19, pp. 557 – 569,

D. Tlalolini, C. Chevallereau, and Y. Aoustin,

“Human-like walking: Optimal motion of

a bipedal robot with toe-rotation motion,”

IEEE/ASME Transactions on Mechatronics,

vol. 16, no. 2, pp. 310 – 320, April 2010.

C. Chevallereau, “Time-scaling control for an underactuated

biped robot,” IEEE Transactions,

vol. 19, no. 2, pp. 362 – 368, 2003.

J. Edelmann, M. Haudum, and M. Plochl, “Bicycle

rider control modelling for path tracking,”

IFAC-PapersOnLine, vol. 48, no. 1, pp. 55 –

, 2015, 8th Vienna International Conferenceon

Mathematical Modelling.

L. Consolini and M. Maggiore, “Control of a

bicycle using virtual holonomic constraints,” Automatica,

vol. 49, no. 9, pp. 2831 – 2839, 2013.

J. Mauny, M. Porez, and F. Boyer, “Symbolic dynamic

modelling of locomotion systems with persistent

contacts - application to the 3d bicycle,”

IFAC-PapersOnLine, vol. 50, no. 1, pp. 7598 –

, 2017, 20th IFAC World Congress.

N. B. Hung, J. Sung, and O. Lim, “A simulation

and experimental study of operating performance

of an electric bicycle integrated with

a semi-automatic transmission,” Applied Energy,

vol. 221, pp. 319 – 333, 2018.

[D. A. Bravo M., C. F. Rengifo R., and J. F. Díaz

O., “Control of a robotic bicycle,” in 2018 IEEE

nd Colombian Conference on Robotics and Automation

(CCRA), Nov 2018, pp. 1–5.

D. A. Bravo, C. F. Rengifo, and J. F. Díaz,

“Comparative analysis between computed torque

control, lqr control and pid control for a robotic

bicycle,” in 2019 IEEE 4th Colombian Conference

on Automatic Control (CCAC), 2019, pp.

–6.

D. A. Bravo, C. F. Rengifo, and W. Acuña., “Dynamics

and preview control of a robotics bicycle,”

in Advances in Automation and Robotics

Research. Springer International Publishing,

, pp. 248–257.

D. A. Bravo and C. F. Rengifo, “Herramienta

para la enseñanza de las ecuaciones de Lagrange

basada en la simulacion de sistemas dinámicos,”

Revista Mexicana de Física, vol. 60, no. 2, pp.

–115, 2014.

W. Khalil and E. Dombre, Modeling, Identification

and Control of Robots, 3rd ed. USA: Taylor

& Francis, Inc., 2002.

M. Vukobratovic, “Zero-moment point. thirty five

years of its life,” International Journal of Humanoid

Robotics, vol. 01, no. 01, pp. 157–173,

C. D. Boor, A Practical Guide to Splines. Springer,

Downloads

Published

2021-01-04

How to Cite

[1]
D. A. Bravo M. and C. F. Rengifo R., “Estabilidad y control de sistemas mecánicos de base móvil”, Rev. Mex. Fis. E, vol. 18, no. 1 Jan-Jun, pp. 69–75, Jan. 2021.