The entropy production rate a bridge between thermodynamics and chemical kinetics

Authors

  • José Nieto Villar Universidad de la Habana
  • J. Rieumont Universidad de La Habana
  • R. Mansilla Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.31349/RevMexFisE.19.010212

Keywords:

Irreversible thermodynamics, entropy thermodynamics, Evolution, Entropy in education, science in school

Abstract

It is shown how through the entropy production rate a natural unification between the formalism of classical thermodynamics and chemical kinetics is achieved. It is also shown how the entropy production rate represents an alternative way to the sensitivity analysis method in order to determine the fundamental steps in a reaction mechanism.

References

P. Atkins and J. De Paula, Atkins’ Physical Chemistry, (ed.;OUP Oxford, 2014).

I. Prigogine, Introduction to thermodynamics of irreversible processes, (ed.; New York: Interscience, 1965).

F. L. Lambert, Entropy is simple, qualitatively, Journal of Chemical Education. 79 (2002) 1241

F. L. Lambert, The misinterpretation of entropy as disorder, Journal of Chemical Education 89 (2012) 310.

F. Flores Camacho, N. Ulloa Lugo, and H. Covarrubias Mart´ınez. ”The concept of entropy, from its origins to teachers.” Rev. Mex. Fis. E 61 (2015) 69.

A. Ben-Naim, Entropy and Information Theory: Uses and Misuses, Entropy 21 (2019) 2112.

M. Ribeiro et al., The entropy universo, Entropy 23.2 (2021) 222.

D. Kondepudi, I. Prigogine, Modern thermodynamics: from heat engines to dissipative structures, (ed.; John Wiley and Sons, 2014).

T. De Donder, P. Van Rysselberghe, Thermodynamic theory of affinity: A book of principles, (ed.; Stanford university press,

.

R. Mansilla, J.M. Nieto-Villar, La Termodin´amica de los sistemas complejos, (ed.; UNAM, 2017).

A. Varma, M. Morbidelli, H. Wu, Parametric sensitivity in chemical systems, (ed.; Cambridge University Press; 2005).

D. Edelson, V.M. Thomas, Sensitivity analysis of oscillating reactions. 1. The period of the Oregonator, The Journal of Physical

Chemistry. 85 (1981) 1555.

D. Edelson, D.L. Allara, A computational analysis of the alkane pyrolysis mechanism: Sensitivity analysis of individual reaction

steps, International Journal of Chemical Kinetics 12 (1980) 605.

D. Edelson, Sensitivity analysis of proposed mechanisms for the Briggs-Rauscher oscillating reaction, The Journal of Physical

Chemistry 87 (1983) 1204.

T. Tur´anyi, Sensitivity analysis of complex kinetic systems. Tools and applications, Journal of mathematical chemistry 5 (1990) 203.

L. Gyorgy, T. Tur´anyi, and R. J. Field, Mechanistic Details of the Oscillatory Belousov-Zhabotinsky Reaction. J. Phys. Chem. 94 (1990) 7162.

T. Tur´anyi, L. Gyorgy, R.J. Field, Analysis and Simplification of the GTF Model of the Belousov-Zhabotinsky Reaction, J. Phys. Chem. 97 (1993) 1931.

J. Rieumont-Briones, J.M. Nieto-Villar, J.M. Garc´ıa, The Rate of Entropy Production as a Mean to Determine the Most Important Reaction Steps in Belousov-Zhabotinsky Reaction, Anales de Qu´ımica, International Edition 93 (1997) 147.

J.M. Nieto-Villar, M.G. Velarde, Chaos and Hyperchaos in a Model of the Belousov-Zhabotinsky Reaction in a Batch Reactor,

Journal of Non-Equilibrium Thermodynamics 25 (2001) 269.

R.J. Field, E. K¨or¨os, R. Noyes, Oscillations in Chemical Systems. II. Thorough Analysis of Temporal Oscillation in the Bromate-Cerium-Malonic Acid System, J. Am. Chem. Soc. 94 (1972) 8649,

P.J. Ruoff, Chaos in Batch Belousov-Zhabotinsky Systems, J. Phys. Chem. 96 (1992) 9104.

J.M. Nieto-Villar, E. Izquierdo-Kulich, R. Quintana, and J. Rieumont, Una aproximaci´on del criterio evolutivo de Prigogine a sistemas qu´ımicos, Rev. Mex. Fis., 59 (2013) 527.

A. Guerra et al., The entropy production in the glycolysis of cancer, Revista Cubana de F´ısica, 31 (2014) 103.

S. Montero et al., Cancer glycolysis I: entropy production and sensitivity analysis in stationary state, J. Adenocarcinoma 1 (2016) 1-7.

S. Montero, R. Martin, R. Mansilla, G. Cocho, J.M. Nieto-Villar, Parameters Estimation in Phase-Space Landscape Reconstruction of Cell Fate: A Systems Biology Approach. In Systems Biology (ed.; Humana Press, New York, NY, 2018; pp 125-170).

R.A. Gatenby, R.J. Gillies, Glycolysis in cancer: a potential target for therapy, Int J Biochem Cell Biol 39 (2007) 1358.

A. Mar´ın-Hern´andez et al., Biochimica et Biophysica Acta 1807 (2011) 755, doi:10.1016/j.bbabio.2010.11.006

S. Fais, G. Venturi and B. Gatenby, Microenvironmental acidosis in carcinogenesis and metastases : new strategies in prevention and therapy, Cancer (2014) 1095, doi: 10.1007/s10555-014-9531-3.

H. Pelicano, D.S. Martin, R.H. Xu, P. Huang, Glycolysis inhibition for anticancer treatment, Oncogene 25 (2006) 4633.

N. Draoui and O. Feron, Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments, Disease models and mechanisms 4 (2011) 727, doi: 10.1242/dmm.007724.

L.M. Martyushev, V.D. Seleznev, Maximum entropy production principle in physics, chemistry and biology, Phys Rep. 264

(2006) 1-45.

Downloads

Published

2022-01-01

How to Cite

[1]
J. Nieto Villar, J. Rieumont, and R. Mansilla, “The entropy production rate a bridge between thermodynamics and chemical kinetics”, Rev. Mex. Fis. E, vol. 19, no. 1 Jan-Jun, pp. 010212 1–, Jan. 2022.