Solution of the coupled β functions of the Standard Model and its minimal supersymmetric extension
DOI:
https://doi.org/10.31349/RevMexFisE.20.010201Keywords:
Standard Model, Runge-Kutta method, supersymmetric extensionAbstract
The Standard Model contains three coupling constants α1, α2 and α3 associated to the intern symmetry groups. However, even such constants are named like that, in fact they are not, they are energy dependent functions. The functional form of the evolution satisfies a set of coupled differential equations the coupled β functions. In general these β functions are highly coupled, from this arises the necessity of using numerical methods for the solution of the problem, because it is not possible to obtain it analytically. In this work it is used the adaptive Runge-Kutta method for a set of ordinary differential equations. The physical motivation of this work arise from the fact that the coupling constants α1, α2 and α3 are associated to the electromagnetic interaction, the weak interaction and the strong interaction, respectively. In the Standard Model, the solutions for α1 and α2 intersect in a point, which can be interpreted as a unification of two fundamental interactions exists. Nevertheless, using the minimal supersymmetric extension of the Standard Model, the three coupling constants intersect in a region, reaching what is known as the Grand Unification.
References
I. Newton, Philosophiænaturalis principia mathematica (Streater, J., & Royal Society, Great Britain, 1687
B. P. Abbott et al. [LIGO Scientific and Virgo], Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116 (2016) 061102, https://doi.org/10.1103/PhysRevLett.116.061102.
https://web.archive.org/web/20070713140711/http://pdg.web.cern.ch/pdg/particleadventure/spanish/ interactions charts.html
M. Gell-Mann, A schematic model of baryons and mesons, Phys. Lett. 8 (1964) 214, https://doi.org/10.1016/ S0031-9163(64)92001-3.
G. Zweig, CERN-TH-401 (1964).
G. Zweig, CERN-TH-412 (1964).
J. Cobian, El Modelo Estandar de la Fısica de Partıculas (Sociedad Nuclear Española, 2018). p. 1-13.
G. Aad et al. [ATLAS], Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1-29 https://doi.org/10.1016/j.physletb.2012.08.020.
S. Chatrchyan et al. [CMS], Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 1, https://doi.org/10.1016/j.physletb.2012.08.021.
P. A. Zyla et al. [Particle Data Group], Review of Particle Physics, PTEP 2020 (2020) 083C01 https://doi.org/10.1093/ptep/ptaa104.
M. A. Moreira, The Standard Model of Particle Physics, Revista Brasileira de Ensino de Fısica, 31 1306 1-1306.11. https://doi.org/10.1590/s1806-11172009000100006.
P. A. Tipler and R. A. Llewellyn, Modern Physics (W. H. Freeman and Company, 2012).
A. Sommerfeld, Zur Quantentheorie der Spektrallinien. Annalen Der Physik, 356 1, https://doi.org/10.1002/andp.19163561702.
M. E. Machacek and M. T. Vaughn, Two-loop renormalization group equations in a general quantum field theory: (I). Wave function renormal- ization, Nucl. Phys. B 222 (1983) 83-103, https://doi.org/10.1016/0550-3213(83)90610-7.
S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19 (1967) 1264, https://doi.org/10.1103/PhysRevLett.19.1264.
A. Salam and J. C. Ward, Electromagnetic and weak interactions, Phys. Lett. 13 (1964) 168, https://doi.org/10.1016/0031-9163(64)90711-5.
S. L. Glashow, The renormalizability of vector meson interactions, Nucl. Phys. 10 (1959) 107, https://doi.org/10.1016/0029-5582(59)90196-8.
J.W. Rohlf, Modern Physics from α to Z 0 (John Wiley & Sons, Inc,1994).
S. P. Martin, A supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 18 (1998) 1, https://doi.org/10.1142/9789812839657 0001.
S. P. Martin and M. T. Vaughn, Two-loop renormalization group equations for soft supersymmetry-breaking couplings, Phys. Rev. D 50 (1994) 2282 [erratum: Phys. Rev. D 78 (2008) 039903] https://doi.org/10.1103/PhysRevD.50.2282.
A. Iserles, A First Course in the Numerical Analysis of Differential Equations (Cambridge University Press, 2009).
J. Kiusalaas, Numerical methods in engineering with Python 3 (Cambridge university press, 2013).
P. A. Zyla et al. [Particle Data Group], PTEP 2020 (2020) 083C01 https://doi.org/10.1093/ptep/ptaa104.
A. Abada et al. [FCC], Future Circular Collider Conceptual Design Report Volume 3, Eur. Phys. J. ST 228 (2019) 755, https://doi.org/10.1140/epjst/e2019-900087-0.
A. Abada et al. [FCC], Future Circular Collider Conceptual Design Report Volume 4, Eur. Phys. J. ST 228 (2019) 1109, https://doi.org/10.1140/epjst/e2019-900088-6.
A. Abada et al. [FCC], Future Circular Collider Conceptual Design Report Volume 2, Eur. Phys. J. ST 228 (2019) 261, https://doi.org/10.1140/epjst/e2019-900045-4.
A. Abada et al. [FCC], Future Circular Collider Conceptual Design Report Volume 1, Eur. Phys. J. C 79 (2019) 474, https://doi.org/10.1140/epjc/s10052-019-6904-3.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Eduardo Tirado-Félix, Roger Hernández-Pinto
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física E right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.