A Python program to draw energy level diagram and to calculate quantum defects, the high lying Rydberg level

Authors

  • Hasan Nafees University of Karachi
  • Saba Javaid NED University of Engineering & Technology
  • Misha shafi, University of Karachi
  • Ahmed Ali Rajput University of Karachi
  • M. Daniyal University of Karachi
  • M. Mustaqeem Zahid University of Karachi
  • Fatima Ejaz University of Karachi

DOI:

https://doi.org/10.31349/RevMexFisE.20.010203

Keywords:

Rydberg atoms, Rydberg energy, Quantum defects, Energy levels, Python

Abstract

Rydberg atoms have strong and adjustable atomic interactions that can be tweaked by choosing different states with various principal quantum numbers or orbital angular momentum. They are highly used in quantum information applications. Furthermore, these atoms have long lifetimes and many possible energy levels, and their separations enable coupling to electromagnetic fields with frequencies ranging over six orders of magnitude. We studied some properties of these atoms and have developed a python program; the program gives two options. Firstly, it calculates energies of elements in s, p, d, and f orbitals and draws an energy level diagram of the element listed in the program. Secondly, it gives an option for calculating energy and quantum defects of atoms and ions, either listed or not listed in the program and generates their graphs accordingly. There are 21 elements in the database  whose energy level diagrams could be drawn. The database can be extended by adding more elements.

 

References

Thomas F. Gallagher, Rydberg atoms (Cambridge University Press, 2005).

Robinson, M. P., Tolra, B. L., Noel, M. W., Gallagher, T. F., & Pillet, P. Spontaneous evolution of Rydberg atoms into an ultracold plasma. Physical review letters, 85(21), 4466 (2000).

Shao, X. Q., Li, D. X., Ji, Y. Q., Wu, J. H., & Yi, X. X. Ground-state blockade of Rydberg atoms and application in entanglement generation. Physical Review A, 96(1), 012328 (2017).

Saffman, M. Quantum computing with atomic qubits and Rydberg interactions: progress and challenges. Journal of Physics B: Atomic, Molecular and Optical Physics, 49(20), 202001 (2016).

Saffman, M., and T. G. Walker. "Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped Rydberg atoms." Physical Review A, 72 (2), 022347 (2005).

Šibalic, N., & Adams, C. S Rydberg Physics, 2399-2891 (2018).

Adams, C. S., Pritchard, J. D., & Shaffer, J. P. Rydberg atom quantum technologies. Journal of Physics B: Atomic, Molecular and Optical Physics, 53(1), 012002 (2019).

Gnedin, Y. N., Mihajlov, A. A., Ignjatović, L. M., Sakan, N. M., Srećković, V. A., Zakharov, M. Y., & Klycharev, A. N. Rydberg atoms in astrophysics. New astronomy reviews, 53(7-10), 259-265 (2009).

Saffman, M., Walker, T. G., & Mølmer, K. Quantum information with Rydberg atoms. Reviews of modern physics, 82(3), 2313 (2010).

Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D., & Soljačić, M. Bound states in the continuum. Nature Reviews Materials, 1(9), 1-13 (2016).

Kazimierczuk, T., Fröhlich, D., Scheel, S., Stolz, H., & Bayer, M. Giant Rydberg excitons in the copper oxide Cu 2 O. Nature, 514(7522), 343-347 (2014).

Bohlouli-Zanjani, P., Petrus, J. A., & Martin, J. D. D. Enhancement of Rydberg atom interactions using ac Stark shifts. Physical review letters, 98(20), 203005 (2007).

Greene, C. H., & Jungen, C. Molecular applications of quantum defect theory. Advances in atomic and molecular physics, 21, 51-121 (1985).

Jungen, C. Molecular applications of quantum defect theory, (Routledge, 2019).

Mack, M., Karlewski, F., Hattermann, H., Höckh, S., Jessen, F., Cano, D., & Fortágh, J. Measurement of absolute transition frequencies of Rb 87 to nS and nD Rydberg states by means of electromagnetically induced transparency. Physical Review A, 83(5), 052515 (2011).

Ham, F. S. Energy bands of alkali metals. I. Calculated bands. Physical Review, 128(1), 82 (1962).

Han, J., Jamil, Y., Norum, D. V. L., Tanner, P. J., & Gallagher, T. F. Rb n f quantum defects from millimeter-wave spectroscopy of cold Rb 85 Rydberg atoms. Physical Review A, 74(5), 054502 (2006).

Jachymski, K., Krych, M., Julienne, P. S., & Idziaszek, Z. Quantum-defect model of a reactive collision at finite temperature. Physical Review A, 90(4), 042705 (2014)

Shimamura, I., Noble, C. J., & Burke, P. G. Complex quantum defects of superexcited Rydberg states of H 2. Physical Review A, 41(7), 3545 (1990).

Cooke, W. E., Gallagher, T. F., Edelstein, S. A., & Hill, R. M. Doubly excited autoionizing Rydberg states of Sr. Physical Review Letters, 40(3), 178 (1978)

Jungen, C. Rydberg Series in the NO Spectrum: An Interpretation of Quantum Defects and Intensities in the s and d Series. The Journal of Chemical Physics, 53(11), 4168-4182 (1970).

Petrus, J. A., Bohlouli-Zanjani, P., & Martin, J. D. D. ac electric-field-induced resonant energy transfer between cold Rydberg atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 41(24), 245001 (2008)

Lim, J., Lee, H. G., & Ahn, J. Review of cold Rydberg atoms and their applications. Journal of the Korean Physical Society, 63(4), 867-876 (2013).

Duncan, A. Rydberg series in atoms and molecules 23, Elsevier. (2012).

Curtis, L. J. Atomic structure and lifetimes: a conceptual approach (Cambridge University Press, 2003).

Martin, W. C. Series formulas for the spectrum of atomic sodium (Na I). JOSA, 70(7), 784-788 (1980).

Downloads

Published

2023-01-13

How to Cite

[1]
Hasan Nafees, “A Python program to draw energy level diagram and to calculate quantum defects, the high lying Rydberg level”, Rev. Mex. Fis. E, vol. 20, no. 1 Jan-Jun, pp. 010203 1–, Jan. 2023.