Ground state energy of the hydrogen atom inside penetrable spherical cavities; variational approach

Authors

  • N. Aquino Universidad Autónoma Metropolitana-Iztapalapa https://orcid.org/0000-0002-3795-0304
  • R. A. Rojas Universidad Autónoma Metropolitana-Iztapalapa
  • E. Castaño Universidad Autónoma Metropolitana-Iztapalapa

DOI:

https://doi.org/10.31349/RevMexFisE.20.010205

Keywords:

Confined hydrogen atom, penetrable confinement, polarizability, nuclear magnetic screening, pressure-induced ionization, tunneling

Abstract

In this work we calculate the ground state energy of the hydrogen atom confined in a sphere of penetrable walls of radius Rc. Inside the sphere the system is subject to a Coulomb potential, whereas outside of it the potential is a finite constant V0. The energy is obtained as a function of  Rc and V0  by means of the Rayleigh-Ritz variational method, in which, the trial function is proposed as a free particle wave function within a finite square well potential but including an exponential factor that takes into account the electron-nucleus Coulomb attraction. For an impenetrable sphere, , the energy grows fast as Rc approaches zero. On the other hand, when the height of the barrier V0 is finite, the energy increases slowly as Rc goes to zero. We also compute the Fermi contact term, nuclear magnetic screening, polarizability, pressure and tunneling as a function of  Rc and V0. As expected, these physical quantities approach the corresponding values of the free hydrogen atom as Rc grows. We also discuss the pressure-induced ionization of the hydrogen atom. The present results are found in good agreement with those previously published in the literature.

Author Biography

N. Aquino, Universidad Autónoma Metropolitana-Iztapalapa

Departamento de Física

References

F. M. Fernández and E. A. Castro, Kinam 4, 193-223 (1982).

P. O. Fröman, S. Yngve, N. J. Fröman, J. Math. Phys. 28, 1813 (1987).

S. J. Yngve, J. Math. Phys. 29, 931 (1988).

W. Jaskólski, Phys. Rep. 271, 1 (1996).

A. L. Buchachenko, J. Phys. Chem. 105, 5839 (2001).

J. P. Connerade, V. H. Dolmatov and P. A. Lakshmi, J. Phys. B: At. Mol. Opt. Phys. 33, 251 (2000).

J. R. Sabin, E. Brändas and S. A. Cruz, Editors, Advances in Quantum Chemistry, vol. 58, (Academic Press, Amsterdam 2009).

K. D. Sen, Editor, Electronic Structure of Quantum Confined Atoms and Molecules, (Springer, New York 2014).

L. Bányai and S. W. Koch, Semiconductor Quantum Dots, World Scientific (1993)

A. Michels, J. de Boer and A. Bijl, Physica 4, 981-994 (1937).

E. Ley-Koo and S. Rubinstein, J. Chem. Phys. 71, 351 (1979).

H. E. Montgomery Jr. and K. D. Sen, Phys. Lett. A, 376, 1992-1996 (2012).

A.L. Frapiccini and D.M. Mitnik, Study of hydrogen confined in onion shells, Eur. Phys. J. D 75, 41 (2021). https://doi.org/10.1140/epjd/s10053-021-00060-4

N. Aquino, V. Granados and H. Yee-Madeira, Rev. Méx. Fís., 55, 125-129 (200); H. de Oliveira Batael, E. D. Filho, J. Chahine and J. F. da Silva. Efects of quantum confinement on thermodynamic properties, Eur. Phys. J. D 75, 52 (2021). https://doi.org/10.1140/epjd/s10053-021-00057-z

R. Jha, S. Giri and P.K. Chattaraj, Does confinement alter the ionization energy and electron affinity of atoms?, Eur. Phys. J. D 75, 88 (2021). https://doi.org/10.1140/epjd/s10053-021-00106-7

E. P. Wigner and H. B. Huntington, J. Chem. Phys. 3 (1935) 764.

K.D. Sen, V.I. Pupyshev, and H.E. Montgomery, Advances in Quantum Chemistry, pages 25-77. Elsevier, (2009).

A.N. Sil, S. Canuto, and P.K. Mukherjee, Advances in Quantum Chemistry, pages 115-175. Elsevier, (2009).

K. D. Sen, J. Che. Phys., 123, 074110 (2005).

N. Aquino, A. Flores-Riveros and J. F. Rivas-Silva, Phys. Lett. A. 377, 2062-2068 (2013)

M. Rodríguez-Bautista, R. Vargas, N. Aquino and J. Garza, Int. J. Quantum Chem., 2017; e25571. https://doi.org/10.1002/qua.25571.

C. R. Estañón, N. Aquino, D. Puertas-Centeno and J. S Dehesa, Int. J. Quantum Chem., 2020;e26192. https://doi.org/10.1002/qua.26192

M. A. Martínez-Sánchez, N. Aquino, R. Vargas and J. Garza, Chem. Phys. Lett., 90, 14 (2017).

E. Ley-Koo, Rev. Mex. Fís. 64, 326-363 (2018).

J. L. Marín and S. A. Cruz, J. Phys. B: At. Mol. Opt. Phys. 25, 4365-4371 (1992).

J. L. Marín and S. A. Cruz, Am. J. Phys. 59, 931-935 (1991).

J. L. Marín, R. Rosas and A. Uribe, Am. J. Phys. 63, 460-463 (1995).

F. M. Fernández, Eur. J. Phys. 31, 285 (2010).

Djajaputra and R. B. Cooper, Eur. J. Phys. 21, 261-267 (2000).

N. Aquino and R. A. Rojas, Eur. J. Phys. 37 (2016).

J. Hunt, J. Martin, V. Rosing, J. Winner and H. E. Montgomery Jr., Chem. Educator 19 (2014) 384.

W. S. Nascimento, F. V. Prudente, Quim. Nova, 39, 757-764 (2016).

NIST Digital Library of Mathematical Functions, http://dlmf.nist.gob/10.

F. M. Fernández and E. A. Castro, J. Chem. Phys. 75, 2908 (1981).

A. S. Davydov, Quantum Mechanics, (Pergamon Press, New York, 1965), Chapter VI.

B. H. Bransden and C. J. Joachain, Quantum mechanics, 2nd edition (Pearson Prentice Hall, England, 2000), pp. 347-349.

R. A. Buckingham, Proc. Roy. Soc. A, 160 (1937) 94.

S. C. Chapra and R. P. Canale, Numerical methods for engineers, fifth edition (McGraw Hill, 2006), Chapter 23.

G. Chabrier, D. Saumon, W. B. Hubbard and J. I. Lunine, Astrophys. J., 391 (1992) 817.

F. Palla, E. E. Salpeter and S. W. Stahler, The Astrophysical J. 271 (1983) 632.

Downloads

Published

2023-01-13

How to Cite

[1]
N. Aquino, R. A. Rojas, and E. Castaño, “Ground state energy of the hydrogen atom inside penetrable spherical cavities; variational approach”, Rev. Mex. Fis. E, vol. 20, no. 1 Jan-Jun, pp. 010205 1–, Jan. 2023.