The one-dimensional Coulomb oscillator

Authors

  • Vladimir Valerievich Ivchenko Kherson State Maritime Academy

DOI:

https://doi.org/10.31349/RevMexFisE.20.010213

Keywords:

One-dimensional oscillations; Coulomb force; genuine nonlinear oscillations; oscillation period

Abstract

We consider the one-dimensional oscillations of a charged point particle under the restoring Coulomb force. We find that, for very small amplitudes, the speed of the particle remains almost constant. We also obtain the exact analytical expression for finding the oscillation period. It turns out to be a monotonically increasing function of the amplitude. For small amplitudes, this quantity is directly proportional to the amplitude itself.

References

H. E. Stockman, Linear or Nonlinear? Am. J. Phys. 31 (1963) 728-729.

J. M. Christian, Anharmonic effects in simple physical models: introducing undergraduates to nonlinearity Eur. J. Phys. 38 (2017) 055002.

V. I. Nekorkin Introduction to Nonlinear Oscillations (1st ed.,Wiley-VCH, Weinheim, 2015).

P. Mohazzabi, Theory and examples of intrinsically nonlinear oscillators Am. J. Phys. 72 (2004) 492.

R. Loudon, One-dimensional hydrogen atom Proc. R. Soc. A 472 (2016) 20150534.

H. N. Spector and J. Lee, Relativistic one-dimensional hydrogen atom Am. J. Phys. 53 (1985) 248.

L. D. Landau and E. M. Lifshitz The Classical Theory of Fields, 2nd edn. (Pergamon press, Oxford, 1984), pp. 93-95.

F. Rohrlich The self-force and radiation reaction Am. J. Phys. 68 (2000) 1109.

J. L. Anderson, Why we use retarded potentials Am. J. Phys. 60 (1992) 465.

S. V. Petrov, Classical dynamics of the relativistic oscillator Eur. J. Phys. 37 (2016) 065605.

K. M. Fujiwara et al., Experimental realization of a relativistic harmonic oscillator New J. Phys. 20 (2018) 063027.

Downloads

Published

2023-01-13

How to Cite

[1]
V. V. Ivchenko, “The one-dimensional Coulomb oscillator”, Rev. Mex. Fis. E, vol. 20, no. 1 Jan-Jun, pp. 010213 1–, Jan. 2023.