Calibración de la unidad de medida inercial de un dispositivo móvil

Authors

DOI:

https://doi.org/10.31349/RevMexFisE.21.020215

Keywords:

Teaching; calibration; mobile device; inertial measurement unit

Abstract

En este artículo se propone un método para la calibración del acelerómetro y del giróscopo de una unidad de medida inercial (UMI), el cual se basa en muestras de señales de aceleración, velocidad, y orientación. La calibración de cada uno de los dos componentes de la UMI requiere estimar nueve parámetros; tres asociados a errores de no ortogonalidad entre los ejes coordenados, otros tres derivados del sesgo del instrumento en las tres direcciones espaciales, y los tres restantes corresponden a las diferencias de los ejes coordenados en cuanto a sus factores de conversión entre valores medidos y unidades físicas. El procedimiento propuesto, el cual encuentra cada vector de nueve parámetros utilizando un algoritmo de optimización basado en el principio de los mínimos cuadrados, se aplicó a un teléfono móvil Samsung Galaxy A32.

This paper proposes a method for the calibration of the accelerometer and gyroscope of an inertial measurement unit (IMU), which is based on samples of acceleration, velocity, and orientation signals. The calibration of each of the two components of the IMU requires the estimation of nine parameters; three associated with non-orthogonality errors between the coordinate axes, three others derived from the bias of the instrument in the three spatial directions, and the remaining three correspond to the differences of the coordinate axes in terms of their conversion factors between measured values and physical units. The proposed procedure, which finds each nine-parameter vector using an optimization algorithm based on the principle of least squares, was applied to a Samsung Galaxy A32 cell phone.

References

D. K. Shaeffer, MEMS inertial sensors: A tutorial overview, IEEE Commun. Mag. 51 (2013) 100, https://doi.org/10.1109/MCOM.2013.6495768

J. S. Carvajal Montealegre, D. D. P. Jiménez Romero, and J. H. Muñoz, App’s como herramientas pedagógicas para el proceso de Enseñanza-Aprendizaje de la Física, Rev. Científica (2019) 160

S. Staacks et al., Advanced tools for smartphone-based experiments: phyphox, Phys. Educ. 53 (2018) 045009, https://doi.org/10.1088/1361-6552/aac05e

S. Gil, and J. L. D. Laccio, Smartphone una herramienta de laboratorio y aprendizaje: laboratorios de bajo costo para el aprendizaje de las ciencias, LAJPE 11 (2017) 1305

D. Megyesi, R. Breda, and M. Matis, Error model of triaxial angular velocity sensor, In 2019 New Trends in Aviation Development (NTAD) (2019) 115-119, https://doi.org/10.1109/NTAD.2019.8875566

N. Kuxdorf-Alkirata et al., Linear error modeling and noise smoothing for improved low-cost IMU-based indoor positioning, In 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS) (2019) 1069-1072, https://doi.org/10.1109/MWSCAS.2019.8885060

Q. Mourcou et al., Performance Evaluation of Smartphone Inertial Sensors Measurement for Range of Motion, Sensors 15 (2015) 23168, https://doi.org/10.3390/s150923168

H. G. Kortier, In use IMU calibration and pose estimation, In International Conference on Indoor Positioning and Indoor Navigation (2019)

W. Ilewicz et al., Estimation of Uncertainty of IMU Module Measurement Results, In 2018 International Conference on Signals and Electronic Systems (ICSES) (2018) 92- 95, https://doi.org/10.1109/ICSES.2018.8507321

J. Almazán et al., Full auto-calibration of a smartphone on board a vehicle using IMU and GPS embedded sensors, In 2013 IEEE Intelligent Vehicles Symposium (IV) (2013) 1374- 1380, https://doi.org/10.1109/IVS.2013.6629658

Y. Li et al., Autonomous Calibration of MEMS Gyros in Consumer Portable Devices, IEEE Sens. J. 15 (2015) 4062, https://doi.org/10.1109/JSEN.2015.2410756

A. Poulose, J. Kim, and D. S. Han, Indoor Localization with Smartphones: Magnetometer Calibration, In 2019 IEEE International Conference on Consumer Electronics (ICCE) (2019) 1-3, https://doi.org/10.1109/ICCE.2019.8661986

X. Yuan et al., Quaternion-Based Unscented Kalman Filter for Accurate Indoor Heading Estimation Using Wearable MultiSensor System, Sensors 15 (2015) 10872, https://doi.org/10.3390/s150510872

D. Tedaldi, A. Pretto, and E. Menegatti, A robust and easy to implement method for IMU calibration without external equipments, In 2014 IEEE International Conference on Robotics and Automation (ICRA) (2014) pp. 3042-3049, https://doi.org/10.1109/ICRA.2014.6907297

C. Jekeli, Inertial Navigation Systems with Geodetic Applications (De Gruyter, Berlin, Boston, 2001), https://doi.org/10.1515/9783110800234

W. Khalil and E. Dombre, Modeling, Identification and Control of Robots, Kogan Page Science, 2nd ed. (Butterworth - Heinemann, Paris, France, 2004)

M. Kleppmann, Simulation of colliding constrained rigid bodies, Ph.D. thesis (2007)

M. J. Caruso, Applications of Magnetoresistive Sensors in Navigation Systems, In SAE International Congress and Exposition (SAE International, 1997). https://doi.org/10.4271/970602

A. Pretto and G. Grisetti, Calibration and performance evaluation of low-cost IMUs. In 20th IMEKO TC4 Symposium on Measurements of Electrical Quantities (2014)

R. M. Rogers, Applied mathematics in integrated navigation systems, AIAA education series, 3rd ed. (American Institute of Aeronautics and Astronautics, Reston, Va, 2007)

C. Jekeli, Inertial Navigation Systems with Geodetic Applications (De Gruyter, 2012), https://doi.org/10.1515/9783110800234

L. Landau and E. Lifshitz, Física teórica. Mecánica, Curso de física teórica (Reverte, 1970)

J. F. C. Acero et al., Matlab Mobile as a Support Tool for The Performance of Students in Engineering, In 2019 International Symposium on Engineering Accreditation and Education (ICACIT) (2019) pp. 1-4, https://doi.org/10.1109/ICACIT46824.2019.9130340

Downloads

Published

2024-07-01

How to Cite

[1]
C. D. Tobar, D. A. Bravo Montenegro, and C. F. Rengifo, “Calibración de la unidad de medida inercial de un dispositivo móvil”, Rev. Mex. Fis. E, vol. 21, no. 2 Jul-Dec, pp. 020215 1–, Jul. 2024.