On the dynamics of a rolling spherical charged shell

Authors

  • Aldrin Cervantes Contreras Universidad Autonoma de Querétaro
  • Abel Santillán Rodríguez Universidad Autónoma de Querétaro
  • Luis Gerardo Soria Silva Universidad Autónoma de Querétaro

DOI:

https://doi.org/10.31349/RevMexFisE.21.010210

Keywords:

Lagrange, Electrodynamics, Electric force, Self-inductance, poynting vector

Abstract

In this work, we investigate the behaviour of a charged spherical shell rolling on an inclined plane, in presence of a point charge located at the lowest part of the inclined plane. The shell generates two magnetic fields, one due to its rotation and another due to its translation, These magnetic fields affect the shell through self-inductance. On the other hand, the charge in the lowest part of the inclined plane interacts with the shell, and we find that under certain conditions the spherical shell rolls back and up the inclined plane due to the electric force. We perform a numerical analysis to study this behavior.

Author Biographies

Aldrin Cervantes Contreras, Universidad Autonoma de Querétaro

.

Abel Santillán Rodríguez, Universidad Autónoma de Querétaro

Facultad de Ingeniería 

Luis Gerardo Soria Silva, Universidad Autónoma de Querétaro

Facultad de ingeniería

References

E. Noether, Invariante Variationsprobleme. Nachr. Kgl. Gesellsch. Wissens. Göttingen, Math.-Phys. KL 2 (1918) 245, http://eudml.org/doc/59024

G. F. Torres del Castillo, Local time in Lagrangian mechanics. Rev. Mex. Phys. E 19 (2022) 1. https://doi.org/10.31349/RevMexFisE.19.020209

H. Goldstein, C. Poole, and J. Safko, Classical mechanics 3th ed. (American Association of Physics Teachers, 2002)

J. B. Marion, Classical Dynamics of Particles and Systems, 5th ed. (Cengage Learning, 2009), P. 360

D. J. Griffiths, Introduction to Electrodynamics, 4th ed. (Prentice Hall, Englewood Cliffs, NJ, 2013), p. 245

H. Sayama, Introduction to the modeling and analysis of complex systems (Open SUNY Textbooks, 2005)

A. Gezerlis, Numerical methods in physics with Python (Cambridge University Press, 2020)

P. Virtanen, R. Gommers, R. Burovski, T. Oliphant, D. Cournapeau et al., Scipy/Scipy: Scipy 1.1. 0Rc1. (Zenodo 2018)

J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, Ing, 1999)

E. Ley-Koo and Ch. Esparza-López and H. Torres-Bustamante, Exact solutions for electromagnetic fields inside and outside a spherical surface with magnetic/electric dipole distributed sources. Rev. Mex. Phys. E 64 (2018) 139. https://doi.org/10.31349/RevMexFisE.64.139

Downloads

Published

2024-01-05

How to Cite

[1]
A. Cervantes Contreras, A. . Santillán Rodríguez, and L. G. Soria Silva, “On the dynamics of a rolling spherical charged shell”, Rev. Mex. Fis. E, vol. 21, no. 1 Jan-Jun, pp. 010210 1–, Jan. 2024.