Aparato para realizar experimentos de Fluorescencia de Rayos X y de pérdida de energía de partículas α en un laboratorio de Física a nivel licenciatura

Authors

  • Juan Antonio Mendoza-Flores Instituto de Física, Universidad Nacional Autónoma de México
  • Derian Leonel Serrano-Juárez Instituto de Física, Universidad Nacional Autónoma de México
  • Juan Carlos Pineda-Santamaría Instituto de Física, Universidad Nacional Autónoma de México
  • Salvador Reynoso-Cruces Facultad de Ciencias, Universidad Nacional Autónoma de México https://orcid.org/0000-0001-6283-915X
  • Javier Miranda Instituto de Física, UNAM https://orcid.org/0000-0003-4745-3050

DOI:

https://doi.org/10.31349/RevMexFis.21.020206

Abstract

Se describen el diseño y el funcionamiento de un dispositivo para realizar experimentos de espectrometrías de rayos X y de partículas cargadas, en un laboratorio avanzado de enseñanza de Física, a nivel licenciatura. Se presentan dos experimentos que pueden llevarse a cabo en seis sesiones de tres horas, cada uno. La primera práctica se refiere a la medición de probabilidades de transiciones radiativas de vacantes con fluorescencia de rayos X, usando la radiación γ producida por una fuente de 241Am para inducir la emisión de rayos X K de elementos lantanoides. En el segundo experimento se mide el espesor de una muestra delgada de un polímero, mediante la pérdida de energía de partículas α emitidas por una fuente triple de 239Pu-241Am-244Cm al atravesar el blanco. Con esto, los alumnos reciben una introducción a las técnicas de vacío, manejo de fuentes radiactivas, detectores de radiación ionizante y electrónica nuclear, así como también se muestra la importancia del cálculo de incertidumbres y errores experimentales.

 

The design and operation of a device for conducting X-ray and charged particle spectrometry experiments in an advanced Physics teaching laboratory at the undergraduate level are described. Two experiments are presented that can be carried out in six sessions of three hours each. The first practice concerns the measurement of probabilities of radiative transitions of vacancies with X-ray fluorescence, using the γ radiation produced by a 241Am source to induce the emission of K X-rays from lanthanoid elements. In the second experiment, the thickness of a thin sample of a polymer is measured through the energy lost by α particles emitted by a 239Pu-241Am-244Cm triple source when passing through the target. With this, students receive an introduction to vacuum techniques, radioactive sources handling, ionizing radiation detectors, and nuclear electronics, as well as the importance of evaluating experimental uncertainties and errors.

References

M.C. Hernández, D. Romero, H. Torres, J. Miranda, and A.E. Hernández-López, X-Ray Fluorescence Analysis of Ground Coffee. J. Nucl. Phys. Mat. Sci. Rad. Appl. 4 (2016) 25-30. https://doi.org/10.15415/jnp.2017.51003

W.K. Robinson, W.D. Adams, and J.L. Duggan, Some experiments with a radioisotope X-ray source for the undergraduate laboratory. Am. J. Phys. 36 (1968) 683–689. https://doi.org/10.1119/1.1975089

H.D. Fetzer, D.L. Parker, and K.C. Stuart, Student X-ray fluorescence experiments. Am. J. Phys. 43 (1975) 323–327. https://doi.org/10.1119/1.10081

D.N. Breiter and M.L. Roush, Trace element analysis of blood serum by proton induced X-ray fluorescence. Am. J. Phys. 43 (1975) 569–572. https://doi.org/10.1119/1.9768

D. Desmarais and J.L. Duggan, Alpha-particle-induced, inner-shell ionization measurements for the undergraduate laboratory. Am. J. Phys. 52 (1984) 507-513. https://doi.org/10.1119/1.13870

M. Dasgupta, B.K. Sharma, B. L. Ahuja, and F.M. Mohammad, Some experiments on X-ray fluorescence for the student laboratory. Am. J. Phys. 56 (1988) 245–251. https://doi.org/10.1119/1.15656

A.S. Bennal, P.D. Shidling, N.M. Badiger, S.R. Thontadarya, and B. Hanumaiah, Measurements of x-ray fluorescence parameters. Am. J. Phys. 73 (2005) 883-887. https://doi.org/10.1119/1.1881254

C. M. Lavelle, Gamma ray spectroscopy with Arduino UNO. Am. J. Phys. 86 (2018) 384-394. https://doi.org/10.1119/1.5026595

R.H. Lindsay, D.H. Ehlers, and R.R. McLeod, Rutherford Scattering Apparatus for Laboratory and Lecture Demonstration. Am. J. Phys. 33 (1965) 1055-1060. https://doi.org/10.1119/1.1971150

J. Cochran and M. G. Payne, An Elementary Experiment on the Energy Straggling of α Particles in Air. Am. J. Phys. 38 (1970) 762–765. https://doi.org/10.1119/1.1976451

P. J. Ouseph and A. Mostovych, An experiment to measure range, range straggling, stopping power, and energy straggling of alpha particles in air. Am. J. Phys. 46 (1978) 742-744. https://doi.org/10.1119/1.11392

D. Desmarais and J.L. Duggan, An undergraduate α-particle time-of-flight experiment for determining the mean excitation energy for electronic stopping power of Al, Cu, Ag, and Au. Am. J. Phys. 52 (1984) 408-411. https://doi.org/10.1119/1.13626

F.D. Becchetti, M. Febbraro J. Riggins, R.O. Torres-Isea, A multi-functional apparatus for α and β spectroscopy utilizing a permanent ring-magnet β spectrometer. Am. J. Phys. 84 (2016) 883-893. https://doi.org/10.1119/1.4964109

J.A. Mendoza-Flores. Experimento para el Laboratorio de Física Contemporánea usando espectrometría de rayos X: probabilidad de transferencia radiativa de vacantes. Tesis profesional, Física, Facultad de Ciencias, Universidad Nacional Autónoma de México. México, 2019.

N. Tsoulfanidis and S. Landsberger. Measurement and detection of radiation. 5a Ed. CRC Press, Boca Raton, EUA, 2021.

A.S. Bennal and N.M. Badiger, Measurement of K–L radiative vacancy transfer probabilities for Ta, Au and Pb in a 2π geometrical configuration. Nucl. Instr. and Meth. B 247 (2006) 161-165. https://doi.org/10.1016/j.nimb.2006.01.057

H. Nullens, P. Van Espen and F. Adams, Linear and Non-linear Peak Fitting in Energy-dispersive X-Ray Fluorescence. X-Ray Spectrom. 8 (1979) 104-109. https://doi.org/10.1002/xrs.1300080305

E.B. Saloman, J.H. Hubbell, J.H. Scofield, X-ray attenuation cross sections for energies 100 eV to 100 keV and elements Z= 1 to Z= 92. At. Data and Nucl. Data Tables 38 (1988) 1-197. https://doi.org/10.1016/0092-640X(88)90044-7

M.O. Krause, Atomic radiative and radiationless yields for K and L shells. J. Phys. Chem. Ref. Data 8 (1979) 307-327. https://doi.org/10.1063/1.555594

National Nuclear Data Center, NuDat 3.0, https://www.nndc.bnl.gov/nudat3/, consultado el 20/06/2023.

J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM−The stopping and range of ions in matter (2010). Nucl. Instr. Meth. B 268 (2010) 1818-1823. https://doi.org/10.1016/j.nimb.2010.02.091

J.H. Scofield. Relativistic Hartree−Slater values for K and L X-ray emission rates. At. Data and Nucl. Data Tables 14 (1974) 121-137. https://doi.org/10.1016/S0092-640X(74)80019-7

Evaluation of measurement data — Guide to the expression of uncertainty in measurement (GUM). Report JCGM 100:2008. Joint Committee for Guides in Metrology, Ginebra, 2008.

A.C. Melissinos, J. Napolitano. Experiments in Modern Physics, 2ª Ed. Academic Press, San Diego, EUA, 2003.

Downloads

Published

2024-07-01

How to Cite

[1]
J. A. Mendoza-Flores, D. L. Serrano-Juárez, J. C. Pineda-Santamaría, S. Reynoso-Cruces, and J. Miranda, “Aparato para realizar experimentos de Fluorescencia de Rayos X y de pérdida de energía de partículas α en un laboratorio de Física a nivel licenciatura”, Rev. Mex. Fis. E, vol. 21, no. 2 Jul-Dec, pp. 020206 1–, Jul. 2024.