Una introducción al cálculo fraccional con aplicaciones en la física

Authors

  • P. Oliva-Sanchez Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias
  • R. Aguilar-Marquez Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias
  • J. A. Pérez-Garza Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias
  • A. Maldonado-Traconis Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias
  • Servando López Aguayo Departamento de Física, Instituto Tecnológico y de Estudios Superiores de Monterrey

DOI:

https://doi.org/10.31349/RevMexFis.23.010211

Keywords:

Fractional Calculus, numerical methods

Abstract

Este trabajo ofrece una introducción a los conceptos fundamentales del cálculo fraccional, destacando las definiciones más utilizadas de la derivada fraccional y poniendo énfasis en sus propiedades y aplicaciones. En particular, se analiza la derivada fraccional de Fourier, subrayando su relativa simplicidad para la implementación numérica, y se presentan códigos en Matlab y Python basados en métodos espectrales para su cálculo. Además, se exploran aplicaciones clave de las derivadas fraccionales en física, como su uso en haces ópticos, estructuras viscoelásticas, mecánica cuántica y el oscilador armónico fraccional. Como complemento, se introducen los fundamentos de la función de Mittag-Leffler, ampliamente utilizada en el cálculo fraccional. Finalmente, se discuten posibles aplicaciones futuras del cálculo fraccional, destacando su relevancia en diversas áreas de la física.

This work provides an introduction to the fundamental concepts of fractional calculus, highlighting the most commonly used definitions of fractional derivatives and emphasizing their properties and applications. In particular, the fractional Fourier derivative is analyzed, underscoring its relative simplicity for numerical implementation, and Matlab and Python codes based on spectral methods for its calculation are presented. Additionally, key applications of fractional derivatives in physics are explored, such as their use in optical beams, viscoelastic structures, quantum mechanics, and the fractional harmonic oscillator. As a complement, the fundamentals of the Mittag-Leffler function, widely used in fractional calculus, are introduced. Finally, potential future applications of fractional calculus are discussed, highlighting its relevance in various areas of physics.

References

E. Morillo, L. Riera, and M. Yangari, Una breve introducción al cálculo fraccionario, Rev. Div. Amarun, 3 (2022) 27

R. Hilfer, Applications of Fractional Calculus in Physics (2000), https://doi.org/10.1142/3779

M. Guía-Calderón et al., El cálculo diferencial e integral fraccionario y sus aplicaciones, Acta Universitaria 25 (2015) 20, https://doi.org/10.15174/au.2015.688

J. M. S. Muñoz, Génesis y desarrollo del Cálculo Fraccional, Pensamiento Matemático 1 (2011) 4

M. Caputo, Elasticita e Dissipazione (Zanichelli, Bologna, 1969)

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications 1 (2015), https://doi.org/10.12785/pfda/010201

F. Bagarello, Fourier transforms, fractional derivatives, and a little bit of quantum mechanics, Rocky Mountain Journal of Mathematics 50 (2019) 415

R. Aguilar-Marquez et al., Generalized fractional one dimensional Hermite-Gaussian beams, Phys. Rev. A 110 (2024) 033522, https://doi.org/10.1103/PhysRevA.110.033522

S. Jalalzadeh, F. R. da Silva, and P. V. Moniz, Prospecting black hole thermodynamics with fractional quantum mechanics, European Physical Journal C 81 (2021), https://doi.org/10.1140/epjc/s10052-021-09438-5

S. Longhi, Fractional Schrödinger equation in optics, Optics Letters 40 (2015) 001117, https://doi.org/10.1364/ol.40.001117

N. Laskin, Fractional quantum mechanics and Levy path integrals, Physics Letters, Section A: General, Atomic and Solid State Physics 268 (2000), https://doi.org/10.1016/S0375-9601(00)00201-2

K. G. Atman and H. Sirin, Nonlocal Phenomena in Quantum Mechanics with Fractional Calculus, Reports on Mathematical Physics 86 (2020), https://doi.org/10.1016/S0034-4877(20)30075-6

A. K. Grünwald, Ueber, Begrenzte, Derivationen und Deren Anwendung, Zeitschrift für Mathematik und Physik 12 (1867) 441

A. V. Létnikov, Theory of differentiation of an arbitrary order, Mat. Sb. 3 (1868) 1

D. Valério, M. D. Ortigueira, and A. M. Lopes, How many fractional derivatives are there?, Mathematics 10 (2022) 737

M. D. Ortigueira and J. Tenreiro Machado, A critical analysis of the Caputo-Fabrizio operator, Communications in Nonlinear Science and Numerical Simulation 59 (2018) 608, https://doi.org/10.1016/j.cnsns.2017.12.001

J. M. Cruz-Duarte et al., A closed form expression for the Gaussian-based Caputo-Fabrizio fractional derivative for signal processing applications, Communications in Nonlinear Science and Numerical Simulation 61 (2018) 138

B. A. Malomed, Optical solitons and vortices in fractional media: a mini-review of recent results, In Photonics, vol. 8 (Mdpi, 2021) p. 353

J. Fujioka, M. Velasco, and A. Ramírez, Fractional optical solitons and fractional Noether’s theorem with ortigueira’s centered derivatives, Applied Mathematics 7 (2016) 1340

S. Bayın, Definition of the Riesz derivative and its application to space fractional quantum mechanics, Journal of Mathematical Physics 57 (2016), https://doi.org/10.1063/1.4968819

G. Failla and M. Zingales, Advanced materials modelling via fractional calculus: Challenges and perspectives, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378 (2020), https://doi.org/10.1098/rsta.2020.0050

V. E. Tarasov, General non-local electrodynamics: Equations and non-local effects, Annals of Physics 445 (2022) https://doi.org/10.1016/j.aop.2022.169082

M. Aburakhis and R. Ordóñez, Generalization of Direct Adaptive Control Using Fractional Calculus Applied to Nonlinear Systems, Journal of Control, Automation and Electrical Systems (2024) 1

J. Rosales et al., Two dimensional fractional projectile motion in a resisting medium, Open Physics 12 (2014) 517

V. E. Tarasov, General fractional dynamics, Mathematics 9 (2021) 1464

J. F. Gómez-Aguilar, R. Razo-Hernández, and D. Granados-Lieberman, A physical interpretation of fractional calculus in observables terms: Analysis of the fractional time constant and the transitory response, Rev. Mex. Fis. 60 (2014)

J. J. Rosales, J. D. Filoteo, and A. González, A comparative analysis of the RC circuit with local and non-local fractional derivatives, Rev. Mex. Fis. 64 (2018) 647, https://doi.org/10.31349/REVMEXFIS.64.647

J. C. Gutiérrez-Vega, Fractionalization of optical beams: I Planar analysis, Optics Letters 32 (2007) 1521, https://doi.org/10.1364/ol.32.001521

S. Maghsoudi-Khouzani and A. Kurt, New semi-analytical solution of fractional Newell-Whitehead-Segel equation arising in nonlinear optics with non-singular and non-local kernel derivative, Optical and Quantum Electronics 56 (2024), https://doi.org/10.1007/s11082-023-06126-4

Y. Zhang et al., Propagation dynamics of a light beam in a fractional Schrödinger equation, Physical review letters 115 (2015) 180403

V. Buesaquillo, Metodos de cálculo fraccional en la descripción de sistemas físicos, Universidad de Nariño, San Juan de Pasto (2013)

R. L. Bagley and P. J. Torvik, Fractional calculus-a different approach to the analysis of viscoelastically damped structures, AIAA Journal 21 (1983) 741

R. Herrmann, Fractional calculus: An introduction for physicists 3rd edition (2018), https://doi.org/10.1142/11107

M. P. Restrepo Segura, Aplicación de la función Mittag-Leffler en la resolucion de ecuaciones diferenciales de orden fraccional, Master’s thesis, Universidad Tecnológica de Pereira (2019)

A. M. Mathai, Some properties of Mittag-Leffler functions and matrix-variate analogues: A statistical perspective, Fractional Calculus and Applied Analysis 13 (2010) 113

H. J. Haubold, A. M. Mathai, and R. K. Saxena, Mittag-Leffler Functions and Their Applications, Journal of Applied Mathematics (2011) 298628, 51, https://doi.org/10.1155/2011/298628

S. Holm, Natural Occurrence of Fractional Derivatives in Physics, In 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA) (2023) pp. 1- 5, https://doi.org/10.1109/ICFDA58234.2023.10153355

H. Zeng et al., Fractional solitons: New phenomena and exact solutions, Frontiers in Physics 11 (2023), https://doi.org/10.3389/fphy.2023.1177335

S. Raubitzek, K. Mallinger, and T. Neubauer, Combining Fractional Derivatives and Machine Learning, A Review (2023), https://doi.org/10.3390/e25010035

S. Arora et al., Applications of fractional calculus in computer vision: a survey, Neurocomputing 489 (2022) 407

F. Marques et al., Recognition of simple handwritten polynomials using segmentation with fractional calculus and convolutional neural networks, In 2019 8th Brazilian Conference on Intelligent Systems (BRACIS) (IEEE, 2019) pp. 245-250

B. G. Yazgac¸ and M. Kırcı, Fractional order calculus based fruit detection, In 2019 8th International Conference on AgroGeoinformatics (Agro-Geoinformatics) (IEEE, 2019) pp. 1-4

H. Zhang, et al., A global neural network learning machine: Coupled integer and fractional calculus operator with an adaptive learning scheme, Neural Networks 143 (2021) 386

M. Joshi, S. Bhosale, and V. A. Vyawahare, A survey of fractional calculus applications in artificial neural networks, Artificial Intelligence Review 56 (2023) 13897

M. Caputo and F. Mainardi, A new dissipation model based on memory mechanism, Pure and Applied Geophysics 91 (1971) 134

C. Monje, et al., Fractional-order Systems and Controls: Fundamentals and Applications (Springer, 2010)

Downloads

Published

2026-01-01

How to Cite

[1]
P. Oliva-Sanchez, R. Aguilar-Marquez, J. A. Pérez-Garza, A. Maldonado-Traconis, and S. López Aguayo, “Una introducción al cálculo fraccional con aplicaciones en la física”, Rev. Mex. Fis. E, vol. 23, no. 1, pp. 010211 1–, Jan. 2026.

Issue

Section

02 Education in Physics