Desempeño de algunos métodos de Runge-Kutta en la aproximación numérica de la ecuación lineal de Schrödinger

Authors

DOI:

https://doi.org/10.31349/RevMexFis.23.010209

Keywords:

Schrodinger equation; conservative methods; Runge-Kutta methods; numerical invariants

Abstract

Se comparan diferentes métodos de Runge-Kutta tradicionales aplicados a la ecuación lineal de Schrödinger. Se estudia la conservación de  los invariantes fı́sicos relevantes de esta ecuación haciendo uso de un problema escalar elemental, la hermiticidad del operador hamiltoniano y argumentos básicos de álgebra matricial. Además, se discute la estabilidad numérica, solubilidad y selección del paso en tiempo en estos métodos.

Different traditional Runge-Kutta methods applied to the linear Schrödinger equation are compared. The conservation of the relevant physical invariants of this equation is studied using an elementary scalar problem, the hermiticity of the Hamiltonian operator and basic arguments of matrix algebra. In addition, numerical stability, solubility and time step selection for these methods are discussed.

References

A. Aguilera, P. Castillo and S. Gómez. Structure preserving-Field directional splitting difference methods for nonlinear Schrödinger systems. Applied Mathematics Letters, 119:107211, (2021) https://doi.org/10.1016/j.aml.2021.107211

A. Aguilera, P. Castillo and S. Gómez. Método conservativo de diferencias finitas de alto orden para una clase de sistemas de Schrödinger no lineales, Revista Mexicana de Fı́sica E, 19(1), 010205 1-14, (2022) https://doi.org/10.31349/RevMexFisE.19.010205

A. Askar and A.S. Cakmak, Explicit integration method for the time-dependent Schrödinger equation for collision problems. The Journal of Chemical Physics, 68(6):2794-2798, 1978. https://doi.org/10.1063/1.436072

P. Castillo, J. Bermúdez and A. Aguilera, A conservative splitting high-order finite difference method for coupled Gross-Pitaevskii equations in 2D, The European Journal Physical Plus, 138(9):789. (2023) https://doi.org/10.1140/epjp/s13360-023-04402-6

N. Cohen-Tannoudji, B. Diu and F. Lalöe, Quantum Mechanics, 2n Ed., Vol I-III, 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany.

Dai, W., Li, G., Nassar, R. and Su, S. On the stability of the FDTD method for solving a time-dependent Schrödinger equation. Numer. Methods Partial Differential Eq., 21:1140-1154, 2005. https://doi.org/10.1002/num.20082

R.M. Dimeo, Wave packet scattering from time-varying potential barriers in one dimension. American Journal of Physics, 82(2):142-152. (2014) https://doi.org/10.1119/1.4833557

D.J. Griffiths and D.F. Schroeter. Introduction to Quantum Mechanics. Third Ed. Cambridge University Press, (2018). https://doi.org/10.1017/9781316995433

E. Hairer, Ch. Lubich and G. Wanner. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Second Ed. Springer Berlin, Heidelberg, (2006), https://doi.org/10.1007/978-3-662-05018-7

E. Hairer, S.P. Nørsett and G. Wanner. Solving ordinary differential equations I: Nonstiff problems. Berlin, New York: Springer-Verlag, (1993), https://link.springer.com/book/10.1007/978-3-540-78862-1

E. Hairer and G. Wanner. Solving ordinary differential equations II: Stiff and differential-algebraic problems (2nd ed.). Berlin, New York: Springer-Verlag, 1996. https://link.springer.com/book/10.1007/978-3-642-05221-7

S.K. Lele. Compact finite difference schemes with spectral-like resolution. J. Comput. Phys., 103(1):16-42, 1992. https://doi.org/10.1016/0021-9991(92)90324-R

D.M. Sullivan. Electromagnetic simulations using the FDTD method (2nd Ed.). IEEE press, John Wiley & Sons, Inc., Hoboken, New Jersey, 2013. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118646700

W. van Dijk and Y.Nogami. Analytical approach to the wave function of a decaying quantum system. Physical Review C, 65:024608, 2002, https://doi.org/10.1103/PhysRevC.65.024608

W. van Dijk. On numerical solutions of the time-dependent Schrödinger equation, American Journal of Physics, 91(10):826-839, 2023, https://doi.org/10.1119/5.0159866

P.B. Visscher. A fast explicit algorithm for the time dependent Schrödinger equation. Computer in Physics, 5(6):596-598, 1991. https://doi.org/10.1063/1.168415

Downloads

Published

2026-01-01

How to Cite

[1]
P. Castillo and A. . Reyes, “Desempeño de algunos métodos de Runge-Kutta en la aproximación numérica de la ecuación lineal de Schrödinger”, Rev. Mex. Fis. E, vol. 23, no. 1, pp. 010209 1–, Jan. 2026.

Issue

Section

02 Education in Physics