Internet-based experiment to measure the muon lifetime in real time

Authors

  • E. Ponce BUAP
  • M. Cid BUAP
  • C. Aguilar BUAP
  • H. Salazar BUAP
  • L. Villaseñor UNAM

DOI:

https://doi.org/10.31349/RevMexFisE.23.010217

Keywords:

Cosmic Rays, Muons, Muon Lifetime, Muon Capture, Acquisition Electronics

Abstract

We describe a web-based experiment to measure the lifetime of cosmic-ray muons that stop in a liquid scintillator detector. Our experimental setup consists of a container filled with liquid scintillator, a photomultiplier tube, a commercial electronics board (STEMlab 125-14) that includes an ARM-based computer with a field programmable gate array (FPGA) and an analog-to-digital converter (ADC). The muons we detect arrive at the detector as part of the secondary cosmic rays that are produced high in the Earth atmosphere when energetic primary cosmic rays collide with nitrogen and oxygen nuclei. The software we use to run this experiment in real time on the web uses Python code on the computer of the Red Pitaya board and HTML/Javascript code on the webpage. The experiment is located at the Centro Interdisciplinario de Investigación y Enseñanza de la Ciencia on the campus of the Benemérita Universidad Autónoma de Puebla (BUAP) in the city of Puebla, ´ Mexico. We report a value for the effective mean lifetime of the stopping muons of 2.051 ± 0.009 µs. This result is lower than the 2.197 µs mean muon lifetime in vacuum due to the capture of negative muons by the nuclei of the atoms of the detector material. The experiment can be accessed through the webpage https://ciiec.buap.mx/Muon-Decay.

References

C. D. Anderson and S. H. Neddermeyer, Cloud Chamber Observations of Cosmic Rays at 4300 Meters Elevation and Near Sea-Level, Phys. Rev. 50 (1936) 263, https://doi.org/10.1103/PhysRev.50.263

N. N. Das Gupta and S. K. Ghosh, A Report on the Wilson Cloud Chamber and its Applications in Physics, Rev. Mod. Phys. 18 (1946) 225-365, https://doi.org/10.1103/RevModPhys.18.225

T. Sloan and A. W. Wolfendale, Cosmic rays, solar activity and the climate, Environ. Res. Let. 8 (2013) 045022, https://doi.org/10.1088/1748-9326/8/4/045022

P. Carlson, A century of cosmic rays, Phys. Today 65 (2012) 30, https://doi.org/10.1063/PT.3.1437

R. A. Batista, The Quest for the Origins of Ultra-High-Energy Cosmic Rays (2024), https://arxiv.org/abs/2412.17201

H. Salazar and L. Villaseñor, Rayos cósmicos ultraenergéticos: el Observatorio Pierre Auger, Ciencia 57 (2006) 64

P. Carlson, Discovery of cosmic rays, AIP Conference Proceedings 1516 (2013) 9, https://doi.org/10.1063/1.4792532

J. Autran et al., Characterization of atmospheric muons at sea level using a cosmic ray telescope, Nucl. Instrum. Methods Phys. Res. A. 903 (2018) 77, https://doi.org/10.1016/j.nima.2018.06.038

T. K. Gaisser, Cosmic Rays and Particle Physics (Cambridge University Press, 1990)

S. Navas et al., Review of Particle Physics, Phys. Rev. D 110 (2024) 030001, https://doi.org/10.1103/PhysRevD.110.030001

ChipVerify, Verilog Tutorial, https://www.chipverify.com/verilog/verilog-tutorial (2023)

J. Serrano, Introduction to FPGA Design, https://cds.cern.ch/record/1100537/files/p231.pdf (2008)

L. H. Crockett et al., The ZYNQ book: embedded processing with the ARM Cortex-A9 on the Xilinx Zynq-7000 all programmable SoC (Strathclyde Academic Media, [S.l.], 2014), https://cds.cern.ch/record/2001018, The book can be consulted by contacting: DGS-RP-IL: Bellotta, Antonio

L. Villaseñor, RedPitaya Hello World FPGA, https://github.com/lvillasen/RedPitaya-Hello-World-FPGA (2025)

L. Villaseñor, RedPitaya Muon Decay, https://github.com/lvillasen/RedPitaya-Muon-Decay (2025)

L. Villaseñor, Muon Decay Analysis, https://github.com/lvillasen/Muon-Decay (2025), Accessed: 2025- 06-08

J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. (Springer New York, NY, 2006), https://doi.org/10.1007/978-0-387-40065-5

Downloads

Published

2026-01-01

How to Cite

[1]
E. Ponce, M. Cid, C. Aguilar, H. Salazar, and L. Villasenor, “Internet-based experiment to measure the muon lifetime in real time”, Rev. Mex. Fis. E, vol. 23, no. 1, pp. 010217 1–, Jan. 2026.

Issue

Section

02 Education in Physics