Uso de GROMACS para el cálculo de propiedades termodinámicas, estructurales y de transporte de iones en agua
DOI:
https://doi.org/10.31349/RevMexFis.23.010210Keywords:
GROMACS; molecular dynamics; simulation; water; ionsAbstract
El estudio de iones en agua sigue siendo un área de gran relevancia tanto en el contexto ambiental y biológico. En este trabajo, presentamos el uso de la paquetería GROMACS para implementar simulaciones por computadora de dinámica molecular con el fin de obtener propiedades termodinámicas, estructurales y de transporte en soluciones acuosas de sales. Se detallan los procedimientos empleados para llevar a cabo las simulaciones y se describen las propiedades analizadas en función de la concentración salina. Para modelar los iones, empleamos los parámetros moleculares del campo de fuerza Madrid-2019, mientras que el agua fue representada mediante el modelo TIP4P/2005. A partir de estas simulaciones, se calcularon propiedades como la densidad (termodinámica), las funciones de distribución radial, el número de iones en contacto y el número de hidratación de aniones y cationes (estructurales), así como el coeficiente de auto-difusión (transporte). Nuestros resultados muestran que este modelo describe con precisión la densidad en soluciones de alta molalidad, además de revelar una notable concordancia entre las propiedades estructurales obtenidas y los datos experimentales reportados en la literatura. Este trabajo busca proporcionar una herramienta útil para el estudio de soluciones iónicas mediante dinámica molecular y el software GROMACS, validando su capacidad para reproducir resultados previamente publicados y consolidando el conocimiento sobre la simulación de iones en solución.
The study of ions in water remains a topic of great relevance in both environmental and biological sciences. In this work, we employ the GROMACS package to perform molecular dynamics simulations and investigate the thermodynamic, structural, and transport properties of aqueous salt solutions. We detail the simulation procedures and analyze the properties as a function of salt concentration. To model the ions, we use the molecular parameters of the Madrid-2019 force field, while water is represented by the TIP4P/2005 model. From these simulations, we compute properties, including density (thermodynamics), radial distribution functions, the number of ions in contact, and the hydration number of anions and cations (structural), as well as the self-diffusion coefficient (transport). Our results demonstrate that this model accurately describes density in high-molality solutions, showing remarkable agreement between simulated structural properties and experimental data reported in the literature. This work provides a valuable tool for studying ionic solutions using molecular dynamics and GROMACS software, validating its ability to reproduce previously published results and reinforcing knowledge on the simulation of ions in solution.
References
W. G. Chapman et al., SAFT: Equation-of-state solutions model for associating fluids, Fluid Ph. Equilib. 52 (1989) 31, https://doi.org/10.1016/0378-3812(89)80308-5
W. G. Chapman et al., New reference equation of state for associating liquids, Ind. Eng. Chem. Res. 29 (1990) 1709, https://doi.org/10.1021/ie00104a021
T. Lafitte et al., Accurate statistical associating fluid theory for chain molecules formed from Mie segments, J. Chem. Phys. 139 (2013) 154504, https://doi.org/10.1063/1.4819786
I. Zeron, J. Abascal, and C. Vega, A force field of Li+, Na+, K +, Mg2+, Ca2+, Cl−, and SO2− 4 4 in aqueous solution based on the TIP4P/2005 water model and scaled charges for the ions, J. Chem. Phys. 151 (2019) 134504, https://doi.org/10.1063/1.5121392
P. Gallo, D. Corradini, and M. Rovere, Ion hydration and structural properties of water in aqueous solutions at normal and supercooled conditions: a test of the structure making and breaking concept, Phys. Chem. Chem. Phys. 13 (2011) 19814, https://doi.org/10.1039/C1CP22166C
C. P. Lamas, C. Vega, and P. Gallo, Impact of sulfate salts on water structure: insights from molecular dynamics, Mol. Phys. 122 (2024) e2406260, https://doi.org/10.1080/00268976.2024.2406260
Y.-K. Choe, E. Tsuchida, and T. Ikeshoji, First-principles molecular dynamics study on aqueous sulfuric acid solutions, J. Chem. Phys. 126 (2007) 154510, https://doi.org/10.1063/1.2718526
R. Roy et al., Thermodynamics and mechanisms of glycine solvation in aqueous NaCl and KCl solutions at 298.15 K, Russ. J. Phys. Chem. A. 89 (2015) 2111, https://doi.org/10.1134/S0036024415110151
M. Andreae, C. Jones, and P. Cox, Strong present-day aerosol cooling implies a hot future, Nature 435 (2005) 1187, https://doi.org/10.1038/nature03671
D. Frenkel and B. Smit, Understanding Molecular Simulation, 2nd ed. (Academic Press, San Diego, 2002), https://doi.org/10.1016/B978-012267351-1/50001-8
M. Abraham et al., GROMACS 2024.3 Manual (2024), https://doi.org/10.5281/zenodo.13457083
J. Abascal and C. Vega, A general porpuose model for the condensed phases of water: TIP4P/2005, J. Chem. Phys. 123 (2005) 234505, https://doi.org/10.1063/1.2121687
B. Hess et al., GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation, J. Chem. Theory Comput. 4 (2008) 435, https://doi.org/10.1021/ct700301q
D. Beeman, Some multistep methods for use in molecular dynamics calculations, J. Comput. Phys. 20 (1976) 130, https://doi.org/10.1016/0021-9991(76)90059-0
S. Blazquez, M. M. Conde, and C. Vega, Scaled charges for ions: An improvement but not the final word for modeling electrolytes in water, J. Chem. Phys 158 (2023) 054505, https://doi.org/10.1063/5.0136498
I. V. Leontyev and A. A. Stuchebrukhov, Electronic continuum model for molecular dynamics simulations, J. Chem. Phys. 130 (2009) 085102, https://doi.org/10.1063/1.3060164
I. V. Leontyev and A. A. Stuchebrukhov, Electronic Continuum Model for Molecular Dynamics Simulations of Biological Molecules, J. Chem. Theory Comput. 6 (2010) 1498-1508, https://doi.org/10.1021/ct9005807
I. V. Leontyev and A. A. Stuchebrukhov, Electronic Polarizability and the Effective Pair Potentials of Water, J. Chem. Theory Comput. 6 (2010) 3153-3161, https://doi.org/10.1021/ct1002048
I. V. Leontyev and A. A. Stuchebrukhov, Polarizable MeanField Model of Water for Biological Simulations with AMBER and CHARMM Force Fields, J. Chem. Theory Comput. 8 (2012) 3207, https://doi.org/10.1021/ct300011h
S. Nose, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52 (1983) 255, https://doi.org/10.1080/00268978400101201
W. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A 31 (1985) 1695, https://doi.org/10.1103/physreva.31.1695
M. Parrinello and A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, J. Appl. Phys. 52 (1981) 7182, https://doi.org/10.1063/1.328693
W. M. Haynes, CRC Handbook of Chemistry and Physics, 95th ed. (CRC Press, 2014)
I.-C. Yeh and G. Hummer, System-Size Dependence of Diffusion Coefficients and Viscosities from Molecular Dynamics Simulations with Periodic Boundary Conditions, J. Phys. Chem. B 108 (2004) 15873, https://doi.org/10.1021/jp0477147
K. S. Pitzer, J. C. Peiper, and R. H. Busey, Thermodynamic Properties of Aqueous Sodium Chloride Solutions, J. Phys. Chem. Ref. Data 13 (1984) 1-102, https://doi.org/10.1063/1.555709
M. Laliberte and W. E. Cooper, Model for Calculating the Density of Aqueous Electrolyte Solutions, J. Chem. Eng. Data 49 (2004) 1141, https://doi.org/10.1021/je0498659
Y. Marcus, Ionic radii in aqueous solutions, Chem. Rev. 88 (1988) 1475, https://doi.org/10.1021/cr00090a003
A. L. Benavides, et al., Estimating the solubility of 1:1 electrolyte aqueous solutions: the chemical potential difference rule, Mol. Phys. 115 (2017) 1301, https://doi.org/10.1080/00268976.2017.1288939
Y. H. Li and S. Gregory, Diffusion of ions in sea water and in deep-sea sediments, Geochim. Cosmochim. Acta 38 (1974) 703, https://doi.org/10.1016/0016-7037(74)90145-8
K. J. Muller and H. G. Hertz, A Parameter as an Indicator for Water-Water Association in Solutions of Strong Electrolytes, J. Phys. Chem. 100 (1996) 1256, https://doi.org/10.1021/jp951303w
V. M. Trejos et al., Further extension of the Madrid-2019 force field: Parametrization of the NO- 4 and NH-4 ions., J. Chem. Phys. 159 (2023) 224501, https://doi.org/10.1063/5.0177363
A. P. de la Luz, La importancia de la metodología en el desarrollo de campos de fuerza utilizados en Dinámica Molecular, Contactos, Revista de Educación en Ciencias e Ingeniería 136 (2024) 58
D. Frenkel and B. Smit, Understanding molecular simulation: from algorithms to applications, 2nd ed. (San Diego: Academic Press, 2002)
I. Nezbeda, F. Moucka, and W. R. Smith, Recent progress in molecular simulation of aqueous electrolytes: force fields, chemical potentials and solubility, Mol. Phys. 114 (2016) 1665, https://doi.org/10.1080/00268976.2016.1165296
I. S. Joung and T. E. Cheatham, Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations., J. Phys. Chem. B. 112 (2008) 9020, https://doi.org/10.1021/jp8001614
J. Alejandre and J.-P. Hansen, Ions in water: From ion clustering to crystal nucleation, Phys. Rev. E 76 (2007) 061505, https://doi.org/10.1103/PhysRevE.76.061505
J. Alejandre et al., The short range anion-H interaction is the driving force for crystal formation of ions in water, J. Chem. Phys. 130 (2009) 174505, https://doi.org/10.1063/1.3124184
T. Martinek et al., Calcium ions in aqueous solutions: Accurate force field description aided by ab initio molecular dynamics and neutron scattering, J. Chem. Phys. 148 (2018) 222813, https://doi.org/10.1063/1.5006779
E. Wernersson and P. Jungwirth, Effect of Water Polarizability on the Properties of Solutions of Polyvalent Ions: Simulations of Aqueous Sodium Sulfate with Different Force Fields., J. Chem. Theory Comput. 6 (2010) 3233, https://doi.org/10.1021/ct100465g
E. Pluhaˇrova, P. E. Mason, and P. Jungwirth, Ion Pairing in Aqueous Lithium Salt Solutions with Monovalent and Divalent Counter-Anions., J. Phys. Chem. 117 (2013) 117, https://doi.org/10.1021/jp402532e
S. Kim et al., Self-Diffusion and Viscosity in Electrolyte Solutions, J. Phys. Chem. B. 116 (2012) 12007, https://doi.org/10.1021/jp306847t
Y. Yao, M. L. Berkowitz, and Y. Kanai, Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer, J. Chem. Phys. 143 (2015) 241101, https://doi.org/10.1063/1.4938083
Z. Kann and J. Skinner, A scaled-ionic-charge simulation model that reproduces enhanced and suppressed water diffusion in aqueous salt solutions, J. Chem. Phys. 141 (2014) 1045007, https://doi.org/10.1063/1.4894500
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 V. M. Trejos, A. S. Noeggerath, I. Zerón-Jiménez

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física E right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
