Solution of the Schrödinger equation for a particle in a uniform force field via the solution for a free particle

Authors

  • G. F. Torres del Castillo Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla https://orcid.org/0000-0002-9262-0252
  • A. S. de la Paz Cota Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla

DOI:

https://doi.org/10.31349/RevMexFisE.23.010215

Keywords:

Schrödinger equation, free particle, particle in a uniform force field, Airy wave packets

Abstract

We show that the solutions of the Schrödinger equation for a free particle are related in a simple manner with the solutions of the Schrödinger equation for a particle in a uniform force field. Making use of this relation we readily obtain the so-called Airy wave packets and the propagator for a particle in a uniform force field.

References

G.F. Torres del Castillo, Relating the free particle with the harmonic oscillator, Rev. Mex. Fís. 71 (2025) 030701. https://doi.org/10.31349/RevMexFis.71.030701

G.F. Torres del Castillo, Relating problems in two dimensions. A particle in a uniform magnetic field and a free particle, Rev. Mex. Fís. (to appear)

F. Finkel, A. González-López, N. Kamran, and M.A. Rodríguez, On form-preserving transformations for the timedependent Schrödinger equation, J. Math. Phys. 40 (1999) 3268. https://doi.org/10.1063/1.532885

A. Schulze-Halberg and B. Roy, Time dependent potentials associated with exceptional orthogonal polynomials, J. Math. Phys. 55 (2014) 123506. https://doi.org/10.1063/1.4903257

A. Contreras-Astorga and V. Hussin, V. Infinite Square-Well, Trigonometric Pöschl-Teller and Other Potential Wells with a Moving Barrier. In Integrability, Supersymmetry and Coherent States (Springer, Cham, 2019), pp. 285–299. https://doi.org/10.1007/978-3-030-20087-9

K. Zelaya and O. Rosas-Ortiz, Quantum nonstationary oscillators: Invariants, dynamical algebras and coherent states via point transformations, Phys. Scr. 95 (2020) 064004. https://doi.org/10.1088/1402-4896/ab5cbf

L.D. Landau and E.M. Lifshitz, Quantum Mechanics (Nonrelativistic Theory), 3rd ed. (Pergamon, Oxford, 1991). §24

H.J.W. Müller-Kirsten, Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral, 2nd ed. (World Scientific, Singapore, 2012). Sec. 13.3. https://doi.org/10.1142/8428

M.V. Berry and N.L. Balazs, Nonspreading wave packets, Am. J. Phys. 47 (1979) 264. https://doi.org/10.1119/1. 11855

D.J. Griffiths and D.F. Schroeter, Introduction to Quantum Mechanics, 3rd ed. (Cambridge University Press, Cambridge, 2018). Prob. 2.51. https://doi.org/10.1017/9781316995433

G.F. Torres del Castillo and B.C. Nájera Salazar, Transformation of a wavefunction under changes of reference frame, Rev. Mex. Fís. 63 (2017) 185

O. Vallée and M. Soares, Airy Functions and Applications to Physics, 2nd ed. (Imperial College Press, London, 2010). Secs. 2.1 and 2.2. https://doi.org/10.1142/p709

D.J. Griffiths and D.F. Schroeter, op. cit., Sec. 2.4

V.M. Vyas, Airy wavepackets are Perelomov coherent states, Am. J. Phys. 86 (2018) 750. https://doi.org/10.1119/1.5051181

Downloads

Published

2026-01-01

How to Cite

[1]
G. F. Torres del Castillo and A. S. de la Paz Cota, “Solution of the Schrödinger equation for a particle in a uniform force field via the solution for a free particle”, Rev. Mex. Fis. E, vol. 23, no. 1, pp. 010215 1–, Jan. 2026.

Issue

Section

02 Education in Physics